- 深度學(xué)習(xí)與大的數(shù)據(jù) 內(nèi)容精選 換一換
-
來自:百科了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò)來自:百科
- 深度學(xué)習(xí)與大的數(shù)據(jù) 相關(guān)內(nèi)容
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
- 深度學(xué)習(xí)與大的數(shù)據(jù) 更多內(nèi)容
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則來自:百科認(rèn)證價(jià)值:了解 數(shù)據(jù)倉庫 服務(wù),通過實(shí)踐提升大數(shù)據(jù)分析的能力 認(rèn)證課程詳情 展開詳情 面對每天大量的實(shí)時(shí)數(shù)據(jù),及時(shí)、高效的處理這些數(shù)據(jù)顯得十分必要。本課程主要介紹如何搭建一個(gè)可視化大屏,為企業(yè)提供精準(zhǔn)、高效的支持。 了解詳情 【初級】基于流計(jì)算的雙十一大屏開發(fā)案例 面對每天大量的實(shí)時(shí)數(shù)據(jù),及時(shí)、高效的處理這些數(shù)據(jù)顯得十來自:專題測試策略的執(zhí)行效果 Policy:Learner的輸出結(jié)果,游戲AI的策略 Reward:Actor的執(zhí)行結(jié)果的反饋,提供給Learner 大數(shù)據(jù)應(yīng)用范圍有哪些 大數(shù)據(jù)應(yīng)用范圍有哪些 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 大數(shù)據(jù)計(jì)算 大數(shù)據(jù)搜索與分析 大 數(shù)據(jù)治理 與開發(fā)來自:專題
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識別
- 動手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—1.3.4 深度學(xué)習(xí)
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)增強(qiáng)
- 深度學(xué)習(xí)技術(shù)在測井?dāng)?shù)據(jù)分類與識別中的應(yīng)用
- 深度學(xué)習(xí)中的遷移學(xué)習(xí):應(yīng)用與實(shí)踐
- 《深度學(xué)習(xí)之圖像識別核心技術(shù)與案例實(shí)戰(zhàn)》—3 深度學(xué)習(xí)中的數(shù)據(jù)
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——3 深度學(xué)習(xí)中的數(shù)據(jù)