- 深度學(xué)習(xí)訓(xùn)練數(shù)據(jù)混合 內(nèi)容精選 換一換
-
圖1功能總覽 ModelArts特色功能如下所示: 數(shù)據(jù)治理 支持數(shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場(chǎng)景部署 支持模型部署到多種生來自:百科華為鯤鵬計(jì)算大數(shù)據(jù)支持基于 FusionInsight 等商業(yè)軟件混合部署 華為鯤鵬計(jì)算大數(shù)據(jù)支持基于FusionInsight等商業(yè)軟件混合部署 時(shí)間:2021-05-24 10:07:58 大數(shù)據(jù) 華為鯤鵬計(jì)算大數(shù)據(jù)支持基于FusionInsight等商業(yè)軟件混合部署。 適用的組件有:來自:百科
- 深度學(xué)習(xí)訓(xùn)練數(shù)據(jù)混合 相關(guān)內(nèi)容
-
,但很多事件的數(shù)據(jù)量很少,用常規(guī)的方式訓(xùn)練模型一個(gè)算法耗時(shí)長,準(zhǔn)確率低。我們依托于預(yù)訓(xùn)練大模型、小樣本學(xué)習(xí)等技術(shù),可以對(duì)這種數(shù)據(jù)量小的城市問題進(jìn)行模型訓(xùn)練學(xué)習(xí)。同時(shí)通過圖像生成等數(shù)據(jù)增強(qiáng)技術(shù),可以實(shí)現(xiàn)把白天的圖像遷移成晚上,晴天的圖像遷移成雨霧等,這樣不僅提高了數(shù)據(jù)量儲(chǔ)備,而且還來自:百科來自:百科
- 深度學(xué)習(xí)訓(xùn)練數(shù)據(jù)混合 更多內(nèi)容
-
互聯(lián)網(wǎng)+大數(shù)據(jù)、AI和數(shù)據(jù)挖掘等技術(shù)的不斷發(fā)展,數(shù)據(jù)庫技術(shù)和產(chǎn)品更是日新月異。 數(shù)據(jù)庫技術(shù)是數(shù)據(jù)庫管理的有效技術(shù),研究如何對(duì)數(shù)據(jù)進(jìn)行科學(xué)管理,從而為人們提供和共享的、安全的可靠的數(shù)據(jù)。本文先為大家介紹數(shù)據(jù)庫的四個(gè)基本概念:數(shù)據(jù)、數(shù)據(jù)庫、數(shù)據(jù)庫管理系統(tǒng)和數(shù)據(jù)庫系統(tǒng)。 數(shù)據(jù) 早期的計(jì)來自:百科大數(shù)據(jù)分析學(xué)習(xí)與微認(rèn)證 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 大數(shù)據(jù)分析學(xué)習(xí)課程與認(rèn)證 課程結(jié)合實(shí)踐,借助配套的實(shí)驗(yàn)環(huán)境,一站式學(xué)練考,輕松Get新知識(shí) 【初級(jí)】球星薪酬決定性因素分析來自:專題大數(shù)據(jù)分析學(xué)習(xí)與微認(rèn)證 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 大數(shù)據(jù)分析學(xué)習(xí)課程與認(rèn)證 課程結(jié)合實(shí)踐,借助配套的實(shí)驗(yàn)環(huán)境,一站式學(xué)練考,輕松Get新知識(shí) 隨著大數(shù)據(jù)、云計(jì)算的發(fā)展,來自:專題AI開發(fā)的目的是什么 AI開發(fā)的目的是將隱藏在一大批數(shù)據(jù)背后的信息集中處理并進(jìn)行提煉,從而總結(jié)得到研究對(duì)象的內(nèi)在規(guī)律。 對(duì)數(shù)據(jù)進(jìn)行分析,一般通過使用適當(dāng)?shù)慕y(tǒng)計(jì)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等方法,對(duì)收集的大量數(shù)據(jù)進(jìn)行計(jì)算、分析、匯總和整理,以求最大化地開發(fā)數(shù)據(jù)價(jià)值,發(fā)揮數(shù)據(jù)作用。 AI開發(fā)的基本流程 AI開來自:百科Turbo高性能,加速訓(xùn)練過程 1、訓(xùn)練數(shù)據(jù)集高速讀取,避免GPU/NPU因存儲(chǔ)I/O等待產(chǎn)生空閑,提升GPU/NPU利用率。 2、大模型TB級(jí)Checkpoint文件秒級(jí)保存和加載,減少訓(xùn)練任務(wù)中斷時(shí)間。 3 數(shù)據(jù)導(dǎo)入導(dǎo)出異步化,不占用訓(xùn)練任務(wù)時(shí)長,無需部署外部遷移工具 1、訓(xùn)練任務(wù)開始前將數(shù)據(jù)從 OBS 導(dǎo)入到SFS來自:專題AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題19:41:22 云計(jì)算 混合云 AI開發(fā)平臺(tái) AI開發(fā)平臺(tái)ModelArts 華為云Stack 8.2版本支持ModelArts。ModelArts平臺(tái)是華為的全棧AI平臺(tái),支持AI的本地開發(fā)、遠(yuǎn)程訓(xùn)練,對(duì)訓(xùn)練任務(wù)進(jìn)行集中的資源池化管理,實(shí)現(xiàn)分布式并行訓(xùn)練。通過ModelArts來自:百科
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 淺談混合精度訓(xùn)練
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- mindspore模型訓(xùn)練—混合精度算法
- 深度學(xué)習(xí)高級(jí),Keras多輸入和混合數(shù)據(jù)實(shí)現(xiàn)回歸模型
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- ATCS 一個(gè)用于訓(xùn)練深度學(xué)習(xí)模型的數(shù)據(jù)集
- tensorflow學(xué)習(xí):準(zhǔn)備訓(xùn)練數(shù)據(jù)和構(gòu)建訓(xùn)練模型
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型