- 深度學(xué)習(xí)訓(xùn)練三個(gè)步驟 內(nèi)容精選 換一換
-
基于內(nèi)容的灰度發(fā)布步驟 基于內(nèi)容的灰度發(fā)布步驟 時(shí)間:2021-07-01 11:42:59 基于內(nèi)容的灰度發(fā)布??筛鶕?jù)請(qǐng)求的內(nèi)容控制其流向的服務(wù)版本(Cookie, Header, OS, Browser)。 步驟1:發(fā)起金絲雀灰度任務(wù),選擇一個(gè)服務(wù)進(jìn)行灰度發(fā)布; 步驟2:給選定服務(wù)創(chuàng)建灰度版;來(lái)自:百科基于權(quán)重的灰度發(fā)布步驟 基于權(quán)重的灰度發(fā)布步驟 時(shí)間:2021-07-01 14:11:38 灰度發(fā)布功能 – 基于權(quán)重的灰度發(fā)布,可根據(jù)需要靈活動(dòng)態(tài)的調(diào)整不同服務(wù)版本的流量比例。 步驟1:發(fā)起金絲雀灰度任務(wù),選擇一個(gè)服務(wù)進(jìn)行灰度發(fā)布; 步驟2:給選定服務(wù)創(chuàng)建灰度版; 步驟3:提交并等待灰度版本正常啟動(dòng);來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練三個(gè)步驟 相關(guān)內(nèi)容
-
保證指定數(shù)量Pod成功運(yùn)行結(jié)束; 2. 支持并發(fā)執(zhí)行; 3. 支持錯(cuò)誤自動(dòng)重試; 4. 支持暫停/恢復(fù)Job。 Job的典型使用場(chǎng)景:計(jì)算以及訓(xùn)練任務(wù), 如批量計(jì)算,AI訓(xùn)練任務(wù)等。 CronJob主要處理周期性或者重復(fù)性的任務(wù): 1. 基于Crontab格式的時(shí)間調(diào)度; 2. 可以暫停/恢復(fù)CronJob。來(lái)自:百科ModelArts為用戶提供了多種常見(jiàn)的預(yù)置鏡像,但是當(dāng)用戶對(duì)深度學(xué)習(xí)引擎、開(kāi)發(fā)庫(kù)有特殊需求場(chǎng)景的時(shí)候,預(yù)置鏡像已經(jīng)不能滿足用戶需求。ModelArts提供自定義鏡像功能支持用戶自定義運(yùn)行引擎。 ModelArts為用戶提供了多種常見(jiàn)的預(yù)置鏡像,但是當(dāng)用戶對(duì)深度學(xué)習(xí)引擎、開(kāi)發(fā)庫(kù)有特殊需求場(chǎng)景的時(shí)候,預(yù)置來(lái)自:專題
- 深度學(xué)習(xí)訓(xùn)練三個(gè)步驟 更多內(nèi)容
-
構(gòu)化數(shù)據(jù)的統(tǒng)一管理,提供數(shù)據(jù)通道、數(shù)據(jù)存儲(chǔ)、 數(shù)據(jù)管理 、數(shù)據(jù)展示等功能。人工智能平臺(tái)提供基于非結(jié)構(gòu)化數(shù)據(jù)的深度學(xué)習(xí)模型開(kāi)發(fā)、訓(xùn)練、評(píng)估和發(fā)布,支持多種計(jì)算資源進(jìn)行模型開(kāi)發(fā)與訓(xùn)練,以及超參調(diào)優(yōu)、模型可視化工具等功能。數(shù)據(jù)標(biāo)注平臺(tái)提供高效率的獨(dú)立的數(shù)據(jù)標(biāo)注功能,支持多類型應(yīng)用場(chǎng)景、多人來(lái)自:專題CR服務(wù)二次開(kāi)發(fā)案例介紹、 基于ModelArts的 OCR 模型訓(xùn)練教程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、熟悉文字識(shí)別行業(yè)趨勢(shì)挑戰(zhàn)及相關(guān)場(chǎng)景解決辦法; 2、熟悉華為云文字識(shí)別OCR知識(shí)體系; 3、通過(guò)模型訓(xùn)練,了解OCR開(kāi)發(fā)邏輯。 課程大綱 第1章 OCR服務(wù)介紹 第2章來(lái)自:百科持GPU NVLink技術(shù),實(shí)現(xiàn)GPU之間的直接通信,提升GPU之間的數(shù)據(jù)傳輸效率。能夠提供超高的通用計(jì)算能力,適用于AI深度學(xué)習(xí)、科學(xué)計(jì)算,在深度學(xué)習(xí)訓(xùn)練、科學(xué)計(jì)算、計(jì)算流體動(dòng)力學(xué)、計(jì)算金融、地震分析、分子建模、基因組學(xué)等領(lǐng)域都能表現(xiàn)出巨大的計(jì)算優(yōu)勢(shì)。 P2v型 彈性云服務(wù)器 的規(guī)格來(lái)自:百科云知識(shí) 領(lǐng)取/購(gòu)買優(yōu)學(xué)院學(xué)習(xí)購(gòu)買學(xué)習(xí)卡常見(jiàn)問(wèn)題 領(lǐng)取/購(gòu)買優(yōu)學(xué)院學(xué)習(xí)購(gòu)買學(xué)習(xí)卡常見(jiàn)問(wèn)題 時(shí)間:2021-04-08 11:37:24 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 使用指南 商品鏈接:優(yōu)學(xué)院平臺(tái);服務(wù)商:北京文華在線教育科技股份有限公司 雖然購(gòu)買學(xué)習(xí)卡的操作比較簡(jiǎn)單,但是同來(lái)自:云商店首先華為云ModelArt服務(wù)可以調(diào)動(dòng)多模型,搭載更多算力,且分布式訓(xùn)練性能更快,成本低,性價(jià)比更高;其次ModelArt是一站式的 AI開(kāi)發(fā)平臺(tái) ,流程更簡(jiǎn)單,數(shù)據(jù)標(biāo)注、處理、模型訓(xùn)練等功能均可實(shí)現(xiàn)。 由華為云底層算力支撐、在線學(xué)習(xí)/考試及實(shí)訓(xùn)平臺(tái)、基于實(shí)際案例開(kāi)發(fā)的課程資源、平臺(tái)服務(wù)四部分來(lái)自:云商店物聯(lián)網(wǎng)學(xué)習(xí)入門 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握物聯(lián)網(wǎng)前沿技術(shù) 物聯(lián)網(wǎng)知識(shí)圖譜 在線課程 01 初學(xué)入門課程、開(kāi)發(fā)者課程、合作伙伴課程 初學(xué)入門課程、開(kāi)發(fā)者課程、合作伙伴課程 動(dòng)手實(shí)驗(yàn) 02 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 初學(xué)入門 初學(xué)入門來(lái)自:專題云安全 學(xué)習(xí)入門 學(xué)課程、做實(shí)驗(yàn)、考認(rèn)證,云安全知識(shí)一手掌握 云安全產(chǎn)品 云安全知識(shí)圖譜 在線課程 01 初學(xué)者入門課程、開(kāi)發(fā)者進(jìn)階課程、合作伙伴賦能課程 初學(xué)者入門課程、開(kāi)發(fā)者進(jìn)階課程、合作伙伴賦能課程 動(dòng)手實(shí)驗(yàn) 02 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí) 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí)來(lái)自:專題通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 服務(wù)咨詢來(lái)自:專題AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來(lái)自:百科
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- pytorch訓(xùn)練的三個(gè)小問(wèn)題
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- AI模型的訓(xùn)練過(guò)程步驟
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練