- 深度學(xué)習(xí)訓(xùn)練機(jī)器 內(nèi)容精選 換一換
-
基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化,機(jī)器翻譯效果和速度業(yè)界領(lǐng)先。 數(shù)據(jù)支持 專業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語(yǔ)料庫(kù)。 穩(wěn)定可靠 基于企業(yè)級(jí)客戶實(shí)踐,經(jīng)受復(fù)雜場(chǎng)景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場(chǎng)景中成功應(yīng)用。 獨(dú)創(chuàng)技術(shù) 通過(guò)混合網(wǎng)絡(luò)結(jié)構(gòu)、受限解碼來(lái)自:百科基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化,機(jī)器翻譯效果和速度業(yè)界領(lǐng)先 數(shù)據(jù)支持 專業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語(yǔ)料庫(kù) 穩(wěn)定可靠 基于企業(yè)級(jí)客戶實(shí)踐,經(jīng)受復(fù)雜場(chǎng)景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場(chǎng)景中成功應(yīng)用 獨(dú)創(chuàng)技術(shù) 通過(guò)混合網(wǎng)絡(luò)結(jié)構(gòu)、受限解碼、實(shí)時(shí)神經(jīng)翻譯等技術(shù),大幅提升翻譯質(zhì)量來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練機(jī)器 相關(guān)內(nèi)容
-
AI全流程開(kāi)發(fā) 面向有AI基礎(chǔ)的開(kāi)發(fā)者,提供機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的算法開(kāi)發(fā)及部署全功能,包含數(shù)據(jù)處理、模型開(kāi)發(fā)、模型訓(xùn)練、AI應(yīng)用管理和部署上線流程。 涉及計(jì)費(fèi)項(xiàng)包含: 開(kāi)發(fā)環(huán)境(Notebook) 模型訓(xùn)練(訓(xùn)練作業(yè)) 部署上線(在線服務(wù)) 自動(dòng)學(xué)習(xí) 面向AI基礎(chǔ)能力弱的開(kāi)發(fā)者,根據(jù)標(biāo)注來(lái)自:專題歸,異常檢測(cè)等算法。支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開(kāi)發(fā)工作來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練機(jī)器 更多內(nèi)容
-
隊(duì)分享了基于華為機(jī)器視覺(jué)產(chǎn)品(軟件定義攝像機(jī)、智能視頻存儲(chǔ)、華為好望商城、華為 好望云服務(wù) )結(jié)合各自賽隊(duì)優(yōu)秀算法和應(yīng)用的聯(lián)合方案及優(yōu)秀實(shí)踐。 華為機(jī)器視覺(jué)總裁 段愛(ài)國(guó) 致辭 經(jīng)過(guò)激烈的角逐,最終大賽決出1個(gè)金獎(jiǎng)、2個(gè)銀獎(jiǎng)、8個(gè)優(yōu)勝獎(jiǎng),華為機(jī)器視覺(jué)總裁段愛(ài)國(guó)、華為機(jī)器視覺(jué)負(fù)責(zé)產(chǎn)業(yè)發(fā)展來(lái)自:云商店
Turbo高性能,加速訓(xùn)練過(guò)程 1、訓(xùn)練數(shù)據(jù)集高速讀取,避免GPU/NPU因存儲(chǔ)I/O等待產(chǎn)生空閑,提升GPU/NPU利用率。 2、大模型TB級(jí)Checkpoint文件秒級(jí)保存和加載,減少訓(xùn)練任務(wù)中斷時(shí)間。 3 數(shù)據(jù)導(dǎo)入導(dǎo)出異步化,不占用訓(xùn)練任務(wù)時(shí)長(zhǎng),無(wú)需部署外部遷移工具 1、訓(xùn)練任務(wù)開(kāi)始前將數(shù)據(jù)從 OBS 導(dǎo)入到SFS來(lái)自:專題
大V講堂——開(kāi)放環(huán)境下的自適應(yīng)視覺(jué)感知 大V講堂——開(kāi)放環(huán)境下的自適應(yīng)視覺(jué)感知 時(shí)間:2020-12-16 16:01:11 現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹來(lái)自:百科
手寫數(shù)字識(shí)別模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 深度學(xué)習(xí)平臺(tái)介紹 第3節(jié) 深度學(xué)習(xí)入門示例介紹 第4節(jié) 神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型 第5節(jié) 華為云深度學(xué)習(xí)平臺(tái)實(shí)操演練 華為云 面向未來(lái)的智能世界,來(lái)自:百科
皆可。 【參賽要求】 1、為了更好參加比賽,建議賽隊(duì)成員可預(yù)先在圖像感知,物體檢測(cè)方面了解基本知識(shí),熟悉基本深度學(xué)習(xí)框架如caffe, tensorflow等、及熟悉機(jī)器人操作系統(tǒng)ROS;另外賽委會(huì)也會(huì)提供完整的海選賽賽前培訓(xùn)資料和半決賽前的線上培訓(xùn),包括ModelArts、 HiLens 和ROS在無(wú)人車上的應(yīng)用。來(lái)自:百科
型或應(yīng)用的流水線工具。在機(jī)器學(xué)習(xí)的場(chǎng)景中,流水線可能會(huì)覆蓋數(shù)據(jù)標(biāo)注、數(shù)據(jù)處理、模型開(kāi)發(fā)/訓(xùn)練、模型評(píng)估、應(yīng)用開(kāi)發(fā)、應(yīng)用評(píng)估等步驟。 ModelArts Workflow(也稱工作流)本質(zhì)是開(kāi)發(fā)者基于實(shí)際業(yè)務(wù)場(chǎng)景開(kāi)發(fā)用于部署模型或應(yīng)用的流水線工具。在機(jī)器學(xué)習(xí)的場(chǎng)景中,流水線可能會(huì)覆來(lái)自:專題
過(guò)類似比賽,機(jī)器人,AI相關(guān)開(kāi)發(fā)作品視頻網(wǎng)址、網(wǎng)站、圖片展示等相關(guān)鏈接),資料形式不限。 (2)7月1日大賽平臺(tái)開(kāi)放無(wú)人車挑戰(zhàn)杯海選賽題,選手需要先在大賽平臺(tái)上學(xué)習(xí)ModelArts、HiLens、無(wú)人駕駛等相關(guān)知識(shí),然后可以使用最簡(jiǎn)單的基本數(shù)據(jù)集和預(yù)置算法進(jìn)行訓(xùn)練,也可以手動(dòng)或自動(dòng)擴(kuò)充訓(xùn)練集,并使用自定義算法。來(lái)自:百科
CR服務(wù)二次開(kāi)發(fā)案例介紹、 基于ModelArts的 OCR 模型訓(xùn)練教程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、熟悉文字識(shí)別行業(yè)趨勢(shì)挑戰(zhàn)及相關(guān)場(chǎng)景解決辦法; 2、熟悉華為云文字識(shí)別OCR知識(shí)體系; 3、通過(guò)模型訓(xùn)練,了解OCR開(kāi)發(fā)邏輯。 課程大綱 第1章 OCR服務(wù)介紹 第2章來(lái)自:百科
- 機(jī)器學(xué)習(xí)——深度學(xué)習(xí)(Deep Learning)
- 機(jī)器學(xué)習(xí)之深度學(xué)習(xí)簡(jiǎn)介
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 機(jī)器學(xué)習(xí)(八):深度學(xué)習(xí)簡(jiǎn)介
- Python機(jī)器學(xué)習(xí):訓(xùn)練Tesseract
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.2 機(jī)器學(xué)習(xí)
- 機(jī)器學(xué)習(xí)3-訓(xùn)練與損失
- 機(jī)器學(xué)習(xí)常識(shí)(三):訓(xùn)練數(shù)據(jù)拆分
- 啥是AI、機(jī)器學(xué)習(xí)與深度學(xué)習(xí)?