- 深度學(xué)習(xí)小樣本集成電路 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)小樣本集成電路 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)小樣本集成電路 更多內(nèi)容
-
工智能的相關(guān)內(nèi)容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的語音識(shí)別神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào) 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科16:28:40 賽題為:“愛(AI)美食 – 通過小樣本學(xué)習(xí)進(jìn)行美食識(shí)別”。隨著越來越多AI應(yīng)用場(chǎng)景的涌現(xiàn),在實(shí)際開發(fā)中,經(jīng)常會(huì)遇到訓(xùn)練樣本數(shù)量不足的問題。因此,此次大賽賽題的核心是小樣本學(xué)習(xí)技術(shù),通過對(duì)大量已知分類的物體特征進(jìn)行有效學(xué)習(xí),然后根據(jù)小樣本學(xué)習(xí)技術(shù),對(duì)少量新分類圖片進(jìn)行有效特征提取,準(zhǔn)確地識(shí)別出新的分類。來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科云知識(shí) 領(lǐng)取/購(gòu)買優(yōu)學(xué)院學(xué)習(xí)購(gòu)買學(xué)習(xí)卡常見問題 領(lǐng)取/購(gòu)買優(yōu)學(xué)院學(xué)習(xí)購(gòu)買學(xué)習(xí)卡常見問題 時(shí)間:2021-04-08 11:37:24 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 使用指南 商品鏈接:優(yōu)學(xué)院平臺(tái);服務(wù)商:北京文華在線教育科技股份有限公司 雖然購(gòu)買學(xué)習(xí)卡的操作比較簡(jiǎn)單,但是同來自:云商店更多精彩實(shí)驗(yàn) 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 了解更多 物聯(lián)網(wǎng)微認(rèn)證 在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書 物聯(lián)網(wǎng)平臺(tái)構(gòu)建智慧路燈應(yīng)用 初級(jí)微認(rèn)證 城市公共照明設(shè)施規(guī)模日益增大,用電量節(jié)節(jié)攀升。為解決傳統(tǒng)路燈的問題,基于物聯(lián)網(wǎng)的智慧路燈應(yīng)運(yùn)而生,本認(rèn)證將會(huì)為您介紹基于物聯(lián)的智慧路燈解決方案和如何構(gòu)建其應(yīng)用。來自:專題更多精彩實(shí)驗(yàn) 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 了解更多 物聯(lián)網(wǎng)微認(rèn)證 在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書 物聯(lián)網(wǎng)平臺(tái)構(gòu)建智慧路燈應(yīng)用 初級(jí)微認(rèn)證 城市公共照明設(shè)施規(guī)模日益增大,用電量節(jié)節(jié)攀升。為解決傳統(tǒng)路燈的問題,基于物聯(lián)網(wǎng)的智慧路燈應(yīng)運(yùn)而生,本認(rèn)證將會(huì)為您介紹基于物聯(lián)的智慧路燈解決方案和如何構(gòu)建其應(yīng)用。來自:專題學(xué)習(xí) 云數(shù)據(jù)庫 GaussDB 學(xué)習(xí)云數(shù)據(jù)庫 GaussDB 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)來自:專題深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)是中科弘云面向有定制化AI需求的行業(yè)用戶,推出的 AI開發(fā)平臺(tái) ,提供從樣本標(biāo)注、模型訓(xùn)練、模型部署的一站式AI開發(fā)能力,幫助用戶快速訓(xùn)練和部署模型,管理全周期AI工作流。平臺(tái)為開發(fā)者設(shè)計(jì)了眾多可幫助降低開發(fā)成本的開發(fā)工具與框架,例如AI數(shù)據(jù)集、AI模型與算力等。來自:其他造個(gè)性化自適應(yīng)學(xué)習(xí)平臺(tái),實(shí)現(xiàn)課內(nèi)學(xué)習(xí)向課外學(xué)習(xí)的延展,幫助每個(gè)學(xué)生實(shí)現(xiàn)彈性有效的針對(duì)性自主學(xué)習(xí); 區(qū)域網(wǎng)絡(luò)學(xué)習(xí)中心功能框架 (2)家庭教育 通過建設(shè)家庭教育平臺(tái),讓家長(zhǎng)通過家庭教育的系統(tǒng)學(xué)習(xí),擁有親子教育能力、自我管理能力、經(jīng)營(yíng)幸福家庭的能力。 (3)老年開放學(xué)院 老年教育作為終來自:云商店
- 【小樣本學(xué)習(xí)】小樣本學(xué)習(xí)概述
- 小樣本學(xué)習(xí)總結(jié)(二)
- 小樣本學(xué)習(xí)總結(jié)(一)
- 基于ModelArts實(shí)現(xiàn)小樣本學(xué)習(xí)
- 12本深度學(xué)習(xí)書籍推薦:有入門,有深度
- CVPR2019——小樣本學(xué)習(xí)論文分享
- 還未被超越的兩本深度學(xué)習(xí),一本用來入門,一本用來進(jìn)階
- 小樣本目標(biāo)檢測(cè)介紹
- 小樣本學(xué)習(xí)在文心ERNIE3.0多分類任務(wù)應(yīng)用--提示學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)