- 深度學(xué)習(xí)條件概率 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)條件概率 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科人類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來(lái)自:百科
- 深度學(xué)習(xí)條件概率 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出作為下一層的輸入,層層連接構(gòu)成深度神經(jīng)網(wǎng)絡(luò)。 1994年,Yann來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科央國(guó)企數(shù)字化從業(yè)務(wù)上云邁向深度用云 央國(guó)企數(shù)字化從業(yè)務(wù)上云邁向深度用云 未來(lái)央國(guó)企所有的數(shù)字化轉(zhuǎn)型都將基于云來(lái)開(kāi)展,用云的深度將決定業(yè)務(wù)創(chuàng)新的速度。深度用云,充分發(fā)揮云的價(jià)值,實(shí)現(xiàn)跨越式發(fā)展。 未來(lái)央國(guó)企所有的數(shù)字化轉(zhuǎn)型都將基于云來(lái)開(kāi)展,用云的深度將決定業(yè)務(wù)創(chuàng)新的速度。深度用云,充分發(fā)揮云的價(jià)值,實(shí)現(xiàn)跨越式發(fā)展。來(lái)自:專題行抵扣。 2、存儲(chǔ)單個(gè)對(duì)象小于64KB按64KB計(jì)算,大于64KB按實(shí)際大小計(jì)算。 按需計(jì)費(fèi) 包年包月 存儲(chǔ)費(fèi)用 深度歸檔存儲(chǔ)數(shù)據(jù)容量(受限公測(cè)) OBS 中存儲(chǔ)的深度歸檔存儲(chǔ)數(shù)據(jù)所占用的存儲(chǔ)空間容量。 1、存儲(chǔ)時(shí)間小于180天按180天計(jì)算,大于180天按實(shí)際天數(shù)計(jì)算。早于180來(lái)自:專題錄音轉(zhuǎn)文字 軟件可以選擇華為云錄音文件識(shí)別服務(wù),華為云錄音文件識(shí)別基于深度學(xué)習(xí)技術(shù),可以實(shí)現(xiàn)5小時(shí)以內(nèi)的音頻到文字的轉(zhuǎn)換。支持垂直領(lǐng)域定制,對(duì)應(yīng)領(lǐng)域轉(zhuǎn)換效果更佳。 為什么選擇華為云錄音文件識(shí)別 高識(shí)別率:基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語(yǔ)料進(jìn)行優(yōu)化,語(yǔ)音識(shí)別率達(dá)到業(yè)界領(lǐng)先。 前沿來(lái)自:專題OBS數(shù)據(jù)恢復(fù)費(fèi)用 訪問(wèn)低頻訪問(wèn)存儲(chǔ)類別、歸檔存儲(chǔ)類別和深度歸檔存儲(chǔ)類別的對(duì)象時(shí),會(huì)根據(jù)對(duì)象大小等產(chǎn)生額外的數(shù)據(jù)恢復(fù)費(fèi)用。此項(xiàng)費(fèi)用不管通過(guò)內(nèi)、外網(wǎng)訪問(wèn)均會(huì)產(chǎn)生;如果使用外網(wǎng)訪問(wèn),則會(huì)同時(shí)計(jì)入到公網(wǎng)流出流量費(fèi)用。 訪問(wèn)低頻訪問(wèn)存儲(chǔ)類別、歸檔存儲(chǔ)類別和深度歸檔存儲(chǔ)類別的對(duì)象時(shí),會(huì)根據(jù)對(duì)象大小等產(chǎn)生來(lái)自:專題
- 《搞懂樸素貝葉斯:先驗(yàn)概率與后驗(yàn)概率的深度剖析》
- 深度學(xué)習(xí)必懂的 13 種概率分布
- 深度學(xué)習(xí)數(shù)學(xué)基礎(chǔ)-概率與信息論
- 先驗(yàn)概率,后驗(yàn)概率
- 貝葉斯公式中的先驗(yàn)概率、后驗(yàn)概率、似然概率
- python概率計(jì)算
- 統(tǒng)計(jì)學(xué)基礎(chǔ)學(xué)習(xí)筆記:概率與概率分布
- 什么是概率編程
- 【數(shù)據(jù)挖掘】貝葉斯公式應(yīng)用 拼寫糾正示例分析 ( 先驗(yàn)概率 | 似然概率 | 后驗(yàn)概率 )
- 環(huán)形公路堵車概率模型