- 深度學(xué)習(xí)算法數(shù)據(jù) 內(nèi)容精選 換一換
-
內(nèi)置大量生物醫(yī)療領(lǐng)域標(biāo)準(zhǔn)分析流程,并結(jié)合華為特有的高性能云計(jì)算,多樣性算力,大數(shù)據(jù)等領(lǐng)先技術(shù)加速計(jì)算過程。 支持十億節(jié)點(diǎn)、百億邊的超大規(guī)模圖數(shù)據(jù)庫查詢,提供適用于基因和生物網(wǎng)絡(luò)數(shù)據(jù)的圖深度學(xué)習(xí)算法。 擁有基于基因組數(shù)據(jù)自動(dòng)深度學(xué)習(xí)的技術(shù)框架AutoGenome,深度融合人工智能技術(shù),產(chǎn)生更加便捷、快速、準(zhǔn)確、可來自:百科
- 深度學(xué)習(xí)算法數(shù)據(jù) 相關(guān)內(nèi)容
-
實(shí)戰(zhàn)派帶你云上體驗(yàn)機(jī)器學(xué)習(xí),不會(huì)算法照樣玩轉(zhuǎn)AI。 課程簡介 本課程主要內(nèi)容包括:人工智能發(fā)展歷程及行業(yè)應(yīng)用介紹,機(jī)器學(xué)習(xí)講解及實(shí)操演示、AI應(yīng)用學(xué)習(xí)方法介紹。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解行業(yè)趨勢及應(yīng)用前景、掌握機(jī)器學(xué)習(xí)的應(yīng)用,及如何進(jìn)行AI應(yīng)用的學(xué)習(xí)。 課程大綱 第1節(jié)來自:百科AI開發(fā)的目的是什么 AI開發(fā)的目的是將隱藏在一大批數(shù)據(jù)背后的信息集中處理并進(jìn)行提煉,從而總結(jié)得到研究對(duì)象的內(nèi)在規(guī)律。 對(duì)數(shù)據(jù)進(jìn)行分析,一般通過使用適當(dāng)?shù)慕y(tǒng)計(jì)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等方法,對(duì)收集的大量數(shù)據(jù)進(jìn)行計(jì)算、分析、匯總和整理,以求最大化地開發(fā)數(shù)據(jù)價(jià)值,發(fā)揮數(shù)據(jù)作用。 AI開發(fā)的基本流程 AI開來自:百科
- 深度學(xué)習(xí)算法數(shù)據(jù) 更多內(nèi)容
-
時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場景和概念標(biāo)簽,具備目標(biāo)檢測和屬性識(shí)別等能來自:百科delArts平臺(tái)。 圖1功能架構(gòu) AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:百科
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 深度學(xué)習(xí)經(jīng)典算法 | 遺傳算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 粒子群算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 蟻群算法解析
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 智能算法、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)簡介
- 深度學(xué)習(xí) | 深度學(xué)習(xí)算法中英文對(duì)照表
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 深度學(xué)習(xí)經(jīng)典算法 | 模擬退火算法詳解
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)