- 深度學(xué)習(xí)算法安全 內(nèi)容精選 換一換
-
0系列課程。本課程將主要講述為什么是深度學(xué)習(xí)框架、深度學(xué)習(xí)框架的優(yōu)勢并介紹二種深度學(xué)習(xí) 框架,包括Pytorch和TensorFlow。接下來會(huì)結(jié)合代碼詳細(xì)講解TensorFlow 2的基 礎(chǔ)操作與常用模塊的使用。最后將通過基于TensorFlow的MNIST手寫體數(shù)字的實(shí) 驗(yàn),加深地對深度學(xué)習(xí)建模流程的理解與熟悉度。來自:百科準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測準(zhǔn)確率高 處理速度快 基于大規(guī)模GPU集群,快速識(shí)別敏感信息 在線商城 智能審核商家/用戶上傳圖像,高效識(shí)別并預(yù)警不合規(guī)圖片,防止涉黃、涉暴、涉政敏感類圖像發(fā)布,降低人工審核成本和業(yè)務(wù)違規(guī)風(fēng)險(xiǎn) 優(yōu)勢 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測準(zhǔn)確率高 處理速度快來自:百科
- 深度學(xué)習(xí)算法安全 相關(guān)內(nèi)容
-
AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題、部署步驟及應(yīng)用操作。 立即學(xué)習(xí) 數(shù)據(jù)庫入門與應(yīng)用 隨著科技的進(jìn)步,人們?yōu)榱烁咝Ц?span style='color:#C7000B'>安全更低成本的發(fā)布應(yīng)用產(chǎn)品,對數(shù)據(jù)庫提出了更高的要求,學(xué)習(xí)該課程能迅速了解華為 云數(shù)據(jù)庫產(chǎn)品 的功能特性和應(yīng)用;幫您掌握華為 云數(shù)據(jù)庫 的基本操作和管理。 課程目標(biāo) 通過學(xué)習(xí)該課程能夠掌握以下知識(shí)和能力。來自:專題
- 深度學(xué)習(xí)算法安全 更多內(nèi)容
-
AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評(píng)價(jià)等結(jié)果。 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)來自:專題GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能來自:專題9、中軟宅客學(xué)院在線平臺(tái)網(wǎng)絡(luò)人工智能課程介紹及7天實(shí)戰(zhàn)、人才測評(píng)。 聽眾收益: 1、了解人工智能基本知識(shí)體系; 2、了解機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)基礎(chǔ)與實(shí)踐; 3、了解AutoML相關(guān)概念和前沿技術(shù); 4、了解Vega的架構(gòu)和算法及網(wǎng)絡(luò)人工智能平臺(tái)的使用方法; 5、了解電信領(lǐng)域業(yè)務(wù)的問題和挑戰(zhàn),及AutoML技術(shù)在電信領(lǐng)域中的應(yīng)用;來自:百科物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢 識(shí)別準(zhǔn)確 采用標(biāo)簽排序學(xué)習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測 簡單易用 提供符合RESTful的API訪問接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽來自:百科能平臺(tái)Mordelarts開發(fā)、迭代、發(fā)布和變現(xiàn)算法,模型。 人工智能市場的商品有: 藝賽旗機(jī)器人流程自動(dòng)化軟件 IS-RPA AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式T來自:云商店云知識(shí) 職業(yè)認(rèn)證在線課程學(xué)習(xí)導(dǎo)讀 職業(yè)認(rèn)證在線課程學(xué)習(xí)導(dǎo)讀 時(shí)間:2020-12-15 10:41:51 華為云學(xué)院提供了豐富的線上學(xué)習(xí)課程,課程采用視頻、文檔、測試題、動(dòng)手實(shí)操等多種學(xué)習(xí)方式。通過本課程,讓開發(fā)者、伙伴、技術(shù)愛好者等全體用戶掌握在線學(xué)習(xí)職業(yè)認(rèn)證的方法,了解職業(yè)認(rèn)來自:百科學(xué)習(xí) 區(qū)塊鏈 技術(shù) 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握區(qū)塊鏈前沿技術(shù) 在線課程 區(qū)塊鏈概念了解 了解區(qū)塊鏈的基本概念,為學(xué)習(xí)奠定基礎(chǔ)。 區(qū)塊鏈全景實(shí)踐課 本期課程結(jié)合華為云區(qū)塊鏈服務(wù) BCS ,從入門到實(shí)踐,循序漸進(jìn)一站式學(xué)習(xí)。5節(jié)實(shí)戰(zhàn)精品課,涵蓋B CS 基礎(chǔ)概念、各行各業(yè)的應(yīng)用現(xiàn)狀來自:專題
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 深度學(xué)習(xí)經(jīng)典算法 | 遺傳算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 粒子群算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 蟻群算法解析
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 智能算法、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)簡介
- 深度學(xué)習(xí) | 深度學(xué)習(xí)算法中英文對照表
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 深度學(xué)習(xí)經(jīng)典算法 | 模擬退火算法詳解
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)