- 深度學(xué)習(xí)算法 卷積神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
制風(fēng)險(xiǎn)與釋放審核人力,提升效率。 產(chǎn)品優(yōu)勢(shì): 1. 多模態(tài)審核:支持同時(shí)對(duì)視頻字幕、聲音與畫(huà)面多維度智能核查; 2. 準(zhǔn)確率高:采用深度卷積神經(jīng)網(wǎng)絡(luò)與海量訓(xùn)練數(shù)據(jù),模型識(shí)別準(zhǔn)確率高; 3. 識(shí)別速度快:實(shí)時(shí)對(duì)視頻進(jìn)行審核,快速識(shí)別視頻違規(guī)項(xiàng)。 華為云 面向未來(lái)的智能世界,數(shù)字化是來(lái)自:百科的處理算法。應(yīng)用使能層包含計(jì)算機(jī)視覺(jué)引擎、語(yǔ)言文字引擎以及通用業(yè)務(wù)執(zhí)行引擎等,其中: 1、計(jì)算機(jī)視覺(jué)引擎面向計(jì)算機(jī)視覺(jué)領(lǐng)域提供一些視頻或圖像處理的算法封裝,專門(mén)用來(lái)處理計(jì)算機(jī)視覺(jué)領(lǐng)域的算法和應(yīng)用。 2、語(yǔ)言文字引擎面向語(yǔ)音及其他領(lǐng)域,提供一些語(yǔ)音、文本等數(shù)據(jù)的基礎(chǔ)處理算法封裝等,來(lái)自:百科
- 深度學(xué)習(xí)算法 卷積神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
取違規(guī)或者關(guān)鍵信息,包括踢、扔、拋物體等。 視頻質(zhì)量分析VQA 視頻質(zhì)量分析(Video Quality Analysis)是通過(guò)深度卷積神經(jīng)網(wǎng)絡(luò)算法識(shí)別視頻畫(huà)面質(zhì)量,將視頻畫(huà)面的質(zhì)量進(jìn)行歸類,從而過(guò)濾出清晰的高質(zhì)量視頻。 視頻 OCR :視頻OCR(Video Optical Character來(lái)自:百科云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門(mén)的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來(lái)自:百科
- 深度學(xué)習(xí)算法 卷積神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別來(lái)自:百科
包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽(tīng)眾收益:來(lái)自:百科
手寫(xiě)數(shù)字識(shí)別模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 深度學(xué)習(xí)平臺(tái)介紹 第3節(jié) 深度學(xué)習(xí)入門(mén)示例介紹 第4節(jié) 神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型 第5節(jié) 華為云深度學(xué)習(xí)平臺(tái)實(shí)操演練 華為云 面向未來(lái)的智能世界,來(lái)自:百科
時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能來(lái)自:百科
參數(shù)分析 算法預(yù)集成 專業(yè)預(yù)測(cè)性算法支持,預(yù)集成工業(yè)領(lǐng)域典型算法,如決策樹(shù),分類,聚類,回歸,異常檢測(cè)等算法。支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)來(lái)自:百科
了TBE算子的融合能力,為神經(jīng)網(wǎng)絡(luò)的優(yōu)化開(kāi)辟一條獨(dú)特的路徑。 張量加速引擎TBE的三種應(yīng)用場(chǎng)景 1、一般情況下,通過(guò)深度學(xué)習(xí)框架中的標(biāo)準(zhǔn)算子實(shí)現(xiàn)的神經(jīng)網(wǎng)絡(luò)模型已經(jīng)通過(guò)GPU或者其它類型神經(jīng)網(wǎng)絡(luò)芯片做過(guò)訓(xùn)練。如果將這個(gè)神經(jīng)網(wǎng)絡(luò)模型繼續(xù)運(yùn)行在昇騰AI處理器上時(shí),希望盡量在不改變?cè)即?來(lái)自:百科
寫(xiě)成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制。 ASRC優(yōu)勢(shì) 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語(yǔ)料進(jìn)行優(yōu)化,識(shí)別率達(dá)到業(yè)界領(lǐng)先。 前沿技術(shù) 使用工業(yè)界成熟的算法,結(jié)合學(xué)術(shù)界最新研究成果,為企業(yè)提供獨(dú)特競(jìng)爭(zhēng)力優(yōu)勢(shì)。 支持熱詞 針對(duì)專業(yè)詞匯,支持上傳至熱詞表,增加專業(yè)詞匯的識(shí)別準(zhǔn)確率。來(lái)自:百科
低時(shí)延場(chǎng)景 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和低來(lái)自:百科
優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,基于復(fù)雜環(huán)境語(yǔ)音審核準(zhǔn)確率高 識(shí)別速度快 實(shí)時(shí)對(duì)音頻進(jìn)行審核,快速識(shí)別音頻違規(guī)項(xiàng) 支持特殊聲音識(shí)別 支持特殊聲音識(shí)別,如嬌喘、呻吟等 對(duì)象存儲(chǔ)服務(wù) OBS 產(chǎn)品優(yōu)勢(shì) 產(chǎn)品優(yōu)勢(shì) 審核準(zhǔn)確 采用深度卷積神經(jīng)網(wǎng)絡(luò)算法與海量訓(xùn)練樣本,生成的預(yù)測(cè)模型識(shí)別精度高,支持實(shí)時(shí)檢測(cè)來(lái)自:產(chǎn)品
視頻編輯 ( Video Content Processing )服務(wù),基于對(duì)視頻的整體分析,提供封面、拆條、摘要等能力 功能描述 視頻拆條:基于深度學(xué)習(xí)多模態(tài)信息分析技術(shù),快速準(zhǔn)確地把長(zhǎng)視頻分割成不同主題的片段,提高視頻識(shí)別、剪輯、檢索等處理的效率 視頻封面:基于互聯(lián)網(wǎng)在線視頻的內(nèi)容理解,快速輸出具有代表性和吸引力的精彩封面來(lái)自:百科
- 深度學(xué)習(xí)(七)——卷積神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)中必備的算法:神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——3.3 LeNet的學(xué)習(xí)算法
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.5 反向傳播算法
- 深度學(xué)習(xí)算法中的卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.4 梯度下降算法
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》
- 動(dòng)手學(xué)深度學(xué)習(xí)之卷積神經(jīng)網(wǎng)絡(luò)(一)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.16 隨機(jī)梯度下降算法