- 深度學(xué)習(xí)視頻實(shí)時(shí)分類 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)視頻實(shí)時(shí)分類 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)視頻實(shí)時(shí)分類 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S玫脑O(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科低時(shí)延和抗丟包:全網(wǎng)端到端時(shí)延小于300ms,音頻抗丟包率超過80%,視頻抗丟包50%,抗網(wǎng)絡(luò)抖動(dòng)超過1000ms,弱網(wǎng)環(huán)境下仍然能夠保證高質(zhì)量的音視頻通信,確保視頻通話過程順暢穩(wěn)定。 華為云實(shí)時(shí)音視頻 CloudRTC 華為云實(shí)時(shí)音視頻服務(wù)( SparkRTC )憑借在視頻業(yè)務(wù)領(lǐng)域長(zhǎng)期技術(shù)積累,快速為行業(yè)提供高并來自:百科華為云計(jì)算 云知識(shí) 實(shí)時(shí)音視頻的優(yōu)點(diǎn) 實(shí)時(shí)音視頻的優(yōu)點(diǎn) 時(shí)間:2020-09-09 18:42:39 實(shí)時(shí)音視頻(Real-Time Communication)憑借在視頻業(yè)務(wù)領(lǐng)域長(zhǎng)期技術(shù)積累,快速為行業(yè)提供高并發(fā)、低延遲、高清流暢、安全可靠的全場(chǎng)景、全互動(dòng)、全實(shí)時(shí)的音視頻服務(wù),適用于在線教育、云會(huì)議、社交文娛等場(chǎng)景。來自:百科
- 深度學(xué)習(xí)進(jìn)階,Keras視頻分類
- 深度學(xué)習(xí)分類任務(wù)常用評(píng)估指標(biāo)
- Python深度學(xué)習(xí)入門——手寫數(shù)字分類
- 深度學(xué)習(xí)圖片分類CNN模板
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的USB攝像頭實(shí)時(shí)視頻采集與火焰檢測(cè)matlab仿真
- 深度學(xué)習(xí)應(yīng)用篇-計(jì)算機(jī)視覺-視頻分類8:時(shí)間偏移模塊(TSM)、TimeSformer無卷積視頻分類方法、注意力機(jī)制
- [資料匯總]機(jī)器學(xué)習(xí)&深度學(xué)習(xí)視頻資料匯總
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的USB攝像頭實(shí)時(shí)視頻采集與水果識(shí)別matlab仿真
- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)垃圾分類系統(tǒng) - 深度學(xué)習(xí) 神經(jīng)網(wǎng)絡(luò) 圖像識(shí)別 垃圾分類
- 深度學(xué)習(xí):LeNet-5實(shí)現(xiàn)服裝分類(PyTorch)
- 開發(fā)深度學(xué)習(xí)模型
- 應(yīng)用場(chǎng)景
- 使用ModelArts Standard自動(dòng)學(xué)習(xí)實(shí)現(xiàn)垃圾分類
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開發(fā)環(huán)境
- 最新動(dòng)態(tài)
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)文本分類
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)聲音分類
- WeLink直播保障服務(wù)的優(yōu)勢(shì)
- 功能介紹
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)圖像分類