- 深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)入門(mén)書(shū)籍 內(nèi)容精選 換一換
-
云知識(shí) 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 時(shí)間:2021-04-08 11:37:24 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 使用指南 商品鏈接:優(yōu)學(xué)院平臺(tái);服務(wù)商:北京文華在線(xiàn)教育科技股份有限公司 雖然購(gòu)買(mǎi)學(xué)習(xí)卡的操作比較簡(jiǎn)單,但是同來(lái)自:云商店1/Pi1實(shí)例,滿(mǎn)足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿(mǎn)足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿(mǎn)足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來(lái)自:專(zhuān)題
- 深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)入門(mén)書(shū)籍 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 超速入門(mén)AT指令集 超速入門(mén)AT指令集 時(shí)間:2022-11-08 12:00:35 華為云IoT 物聯(lián)網(wǎng)平臺(tái) 什么是AT指令集 AT命令,用來(lái)控制TE(Terminal Equipment)和MT(Mobile Terminal)之間交互的規(guī)則,如下圖所示。在來(lái)自:百科華為云計(jì)算 云知識(shí) 大數(shù)據(jù)入門(mén)與應(yīng)用 大數(shù)據(jù)入門(mén)與應(yīng)用 時(shí)間:2020-12-07 15:12:38 大數(shù)據(jù)(big data)是什么?本課程無(wú)特殊預(yù)備知識(shí)要求,從大數(shù)據(jù)的產(chǎn)生到大數(shù)據(jù)的應(yīng)用,為您揭開(kāi)大數(shù)據(jù)神秘的面紗。 課程簡(jiǎn)介 本次課程的學(xué)習(xí),我們首先從“大數(shù)據(jù)是什么”開(kāi)始,到來(lái)自:百科
- 深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)入門(mén)書(shū)籍 更多內(nèi)容
-
GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫(huà)渲染,CAD等 應(yīng)用場(chǎng)景 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)算來(lái)自:百科云享讀書(shū)會(huì)系列活動(dòng),每期會(huì)選取一本技術(shù)相關(guān)的暢銷(xiāo)書(shū)籍,邀請(qǐng)行業(yè)專(zhuān)家/原作者提煉書(shū)籍精華、分享領(lǐng)讀視頻,幫助大家快速積累專(zhuān)業(yè)知識(shí)。本期活動(dòng)邀請(qǐng)了原書(shū)作者、華為資深專(zhuān)家徐老師現(xiàn)身領(lǐng)讀,帶你深入解析Python語(yǔ)言虛擬機(jī)。 目標(biāo)學(xué)員 高校學(xué)生、開(kāi)發(fā)者 課程目標(biāo) 通過(guò)本課程學(xué)習(xí),使學(xué)員掌握以下技能: 1.深來(lái)自:百科云數(shù)據(jù)庫(kù) GaussDB入門(mén) 云數(shù)據(jù)庫(kù) GaussDB 入門(mén) 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴(lài)之選。如何快速了解 GaussDB數(shù)據(jù)庫(kù) ,帶你快速入門(mén)。 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分來(lái)自:專(zhuān)題學(xué)習(xí)云數(shù)據(jù)庫(kù)GaussDB 學(xué)習(xí)云數(shù)據(jù)庫(kù)GaussDB 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴(lài)之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)來(lái)自:專(zhuān)題深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)是中科弘云面向有定制化AI需求的行業(yè)用戶(hù),推出的 AI開(kāi)發(fā)平臺(tái) ,提供從樣本標(biāo)注、模型訓(xùn)練、模型部署的一站式AI開(kāi)發(fā)能力,幫助用戶(hù)快速訓(xùn)練和部署模型,管理全周期AI工作流。平臺(tái)為開(kāi)發(fā)者設(shè)計(jì)了眾多可幫助降低開(kāi)發(fā)成本的開(kāi)發(fā)工具與框架,例如AI數(shù)據(jù)集、AI模型與算力等。來(lái)自:其他軟件開(kāi)發(fā)小白在華為云的學(xué)習(xí)成長(zhǎng)經(jīng)歷 作為計(jì)算機(jī)新人,我通過(guò)網(wǎng)上的相關(guān)平臺(tái),篩選很多開(kāi)發(fā)者高頻使用的工具。前輩也同步推薦給我很多學(xué)習(xí)的平臺(tái)和日常使用的工具,我也根據(jù)前輩提供方向進(jìn)行探索,華為云提供了豐富的開(kāi)發(fā)者生態(tài),而且口碑在開(kāi)發(fā)圈內(nèi)得到了一致好評(píng)。因此我選擇了在華為云平臺(tái)上開(kāi)啟我的學(xué)習(xí)和工作成長(zhǎng)之路。這里也是我工作起步的敲門(mén)磚。來(lái)自:百科目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測(cè)、扭曲校正、文本內(nèi)容檢測(cè)、圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用來(lái)自:百科華為云計(jì)算 云知識(shí) 實(shí)時(shí)流計(jì)算服務(wù) 入門(mén) 實(shí)時(shí)流計(jì)算服務(wù)入門(mén) 時(shí)間:2020-11-25 15:13:31 本視頻主要為您介紹實(shí)時(shí)流計(jì)算服務(wù)入門(mén)的教程指導(dǎo)。 場(chǎng)景描述: CS服務(wù)是運(yùn)行在公有云上的實(shí)時(shí)流式大數(shù)據(jù)分析服務(wù),全托管的方式用戶(hù)無(wú)需感知計(jì)算集群,只需聚焦于Stream SQ來(lái)自:百科本課程主要內(nèi)容包括:Docker容器基礎(chǔ)知識(shí)介紹及實(shí)踐、Kubernetes集群管理基礎(chǔ)知識(shí)介紹及實(shí)戰(zhàn)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、學(xué)習(xí)Docker容器的基礎(chǔ)知識(shí),快速入門(mén)并實(shí)操體驗(yàn); 2、系統(tǒng)學(xué)習(xí)Kubernetes集群管理知識(shí),并實(shí)操體驗(yàn); 3、幫助容器技術(shù)開(kāi)發(fā)者、愛(ài)好者通過(guò)CKA認(rèn)證。 課程大綱來(lái)自:百科生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開(kāi)發(fā)工作 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科華為云計(jì)算 云知識(shí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S玫脑O(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)來(lái)自:百科造個(gè)性化自適應(yīng)學(xué)習(xí)平臺(tái),實(shí)現(xiàn)課內(nèi)學(xué)習(xí)向課外學(xué)習(xí)的延展,幫助每個(gè)學(xué)生實(shí)現(xiàn)彈性有效的針對(duì)性自主學(xué)習(xí); 區(qū)域網(wǎng)絡(luò)學(xué)習(xí)中心功能框架 (2)家庭教育 通過(guò)建設(shè)家庭教育平臺(tái),讓家長(zhǎng)通過(guò)家庭教育的系統(tǒng)學(xué)習(xí),擁有親子教育能力、自我管理能力、經(jīng)營(yíng)幸福家庭的能力。 (3)老年開(kāi)放學(xué)院 老年教育作為終來(lái)自:云商店華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來(lái)的方向,云數(shù)據(jù)庫(kù)是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理, 數(shù)據(jù)庫(kù)遷移 和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷來(lái)自:百科計(jì)算引擎由開(kāi)發(fā)者進(jìn)行自定義來(lái)完成所需要的具體功能。 通過(guò)流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過(guò)濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來(lái)源。來(lái)自:百科
- 12本深度學(xué)習(xí)書(shū)籍推薦:有入門(mén),有深度
- 深度學(xué)習(xí)入門(mén)之神經(jīng)網(wǎng)絡(luò)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——1概述
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——3.3 LeNet的學(xué)習(xí)算法
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.2 矩陣運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.15 丟失連接
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.14 丟失輸出