- 深度學(xué)習(xí)模型選擇 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)模型選擇 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)模型選擇 更多內(nèi)容
-
本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。 4、掌握主流深度學(xué)習(xí)模型的技術(shù)特點(diǎn)。來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評(píng)價(jià)等結(jié)果。來自:專題華為云計(jì)算 云知識(shí) 如何選擇DAYU版本 如何選擇DAYU版本 時(shí)間:2020-09-09 09:37:16 智能數(shù)據(jù)湖 運(yùn)營平臺(tái)(DAYU)是為了應(yīng)對(duì)上述挑戰(zhàn)、針對(duì)企業(yè)數(shù)字化運(yùn)營訴求提供的數(shù)據(jù)全生命周期管理、具有智能 數(shù)據(jù)管理 能力的一站式治理運(yùn)營平臺(tái),包含數(shù)據(jù)集成、規(guī)范設(shè)計(jì)、數(shù)據(jù)開來自:百科華為云計(jì)算 云知識(shí) 為什么選擇E CS ? 為什么選擇ECS? 時(shí)間:2021-07-01 10:32:05 云計(jì)算 ECS具有以下功能: 1、類型豐富: 多規(guī)格類型、多鏡像類型、多磁盤種類。 豐富的規(guī)格類型:提供多種類型的 彈性云服務(wù)器 ,可滿足不同的使用場景,每種類型的彈性云服務(wù)器包含多種規(guī)格,同時(shí)支持規(guī)格變更。來自:百科AI-Native自治,管理智能高效 AI-Native自治,管理智能高效 參數(shù)自調(diào)優(yōu) 當(dāng)前已經(jīng)覆蓋了500+重點(diǎn)參數(shù),通過深度強(qiáng)化學(xué)習(xí)與全局調(diào)優(yōu)算法,結(jié)合不同業(yè)務(wù)負(fù)載模型進(jìn)行針對(duì)性調(diào)優(yōu),相比DBA人工根據(jù)經(jīng)驗(yàn)調(diào)優(yōu),性能提升30%的同時(shí),耗費(fèi)時(shí)間從天下降到分鐘級(jí)。 智能索引推薦 通過啟發(fā)來自:專題
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 學(xué)習(xí)筆記|模型的評(píng)估與選擇
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 深度解析與學(xué)習(xí)應(yīng)用-模型樹
- 深度思考模型與普通AI:區(qū)別、選擇與擅長領(lǐng)域
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:元學(xué)習(xí)與模型無關(guān)優(yōu)化(MAML)