- 深度學(xué)習(xí)模型和算法 內(nèi)容精選 換一換
-
我們指尖觸碰的那一剎那背后隱藏的代碼世界又是怎么樣的呢? 今天就來和大家說說IoT智能設(shè)備輕松實(shí)現(xiàn)AI的奧秘! AIoT,智能化升級(jí)的最佳通道 AIoT,對(duì)我們來說已經(jīng)不是一個(gè)陌生的詞匯了,隨著深度學(xué)習(xí)的蓬勃發(fā)展和5G萬物互聯(lián)時(shí)代的到來,越來越多的人將AI與IoT結(jié)合到一起,而來自:百科面向有AI基礎(chǔ)的開發(fā)者,提供機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的算法開發(fā)及部署全功能,包含數(shù)據(jù)處理,模型開發(fā),模型訓(xùn)練,模型管理和部署上線流程。涉及計(jì)費(fèi)項(xiàng)包括:模型開發(fā)環(huán)境(Notebook),模型訓(xùn)練(訓(xùn)練作業(yè)、可視化作業(yè)),部署上線(在線服務(wù))。AI全流程開發(fā)支持公共資源池,專屬資源池和EVS存儲(chǔ)三類資源來自:百科
- 深度學(xué)習(xí)模型和算法 相關(guān)內(nèi)容
-
供領(lǐng)先算法技術(shù),保證AI應(yīng)用開發(fā)的高效和推理結(jié)果的準(zhǔn)確,同時(shí)減少人力投入。ModelArts致力于底層模型專業(yè)開發(fā)、調(diào)參等。 ModelArts Pro根據(jù)預(yù)置工作流生成指定場(chǎng)景模型,無需深究底層模型開發(fā)細(xì)節(jié)。ModelArts Pro致力于解決通用API局限性、AI算法開發(fā)門檻來自:百科多種操作流程和模式,方便開發(fā)者編碼擴(kuò)展,快速構(gòu)建模型及應(yīng)用。 產(chǎn)品架構(gòu) ModelArts是一個(gè)一站式的開發(fā)平臺(tái),能夠支撐開發(fā)者從數(shù)據(jù)到AI應(yīng)用的全流程開發(fā)過程。包含數(shù)據(jù)處理、模型訓(xùn)練、模型管理、模型部署等操作,并且提供AI市場(chǎng)功能,能夠在市場(chǎng)內(nèi)與其他開發(fā)者分享模型。 Model來自:百科
- 深度學(xué)習(xí)模型和算法 更多內(nèi)容
-
針對(duì)多種數(shù)據(jù)源提供統(tǒng)一數(shù)據(jù)探索,快速發(fā)現(xiàn)有價(jià)值數(shù)據(jù) 多種算法內(nèi)置 基于已有時(shí)間序列算法,對(duì)產(chǎn)品缺陷進(jìn)行預(yù)測(cè),挖掘須重點(diǎn)關(guān)注質(zhì)量的產(chǎn)品 專業(yè) 數(shù)據(jù)倉(cāng)庫(kù) 專業(yè)數(shù)倉(cāng)支持設(shè)計(jì)應(yīng)用多維分析,快速響應(yīng) 智能設(shè)備維護(hù) 預(yù)測(cè)性維護(hù),根據(jù)系統(tǒng)過去和現(xiàn)在的狀態(tài),采用時(shí)間序列預(yù)測(cè)、神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)和回歸分析等預(yù)測(cè)推理方法,預(yù)測(cè)系統(tǒng)來自:百科實(shí)戰(zhàn)派帶你云上體驗(yàn)機(jī)器學(xué)習(xí),不會(huì)算法照樣玩轉(zhuǎn)AI。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人工智能發(fā)展歷程及行業(yè)應(yīng)用介紹,機(jī)器學(xué)習(xí)講解及實(shí)操演示、AI應(yīng)用學(xué)習(xí)方法介紹。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解行業(yè)趨勢(shì)及應(yīng)用前景、掌握機(jī)器學(xué)習(xí)的應(yīng)用,及如何進(jìn)行AI應(yīng)用的學(xué)習(xí)。 課程大綱 第1節(jié)來自:百科火導(dǎo)致的火災(zāi)風(fēng)險(xiǎn),本算法通過實(shí)時(shí)監(jiān)測(cè)電梯內(nèi)的攝像頭畫面,方便樓宇管理人員及時(shí)發(fā)現(xiàn)電瓶車,提高管理效率。 核心功能: 單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車; 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對(duì)電瓶車的檢測(cè)來自:云商店為了增強(qiáng)算法的處理問題的能力,對(duì)算法進(jìn)行優(yōu)化是必不可少的。算法優(yōu)化一般是對(duì)算法結(jié)構(gòu)和收斂進(jìn)行優(yōu)化。 本算法雖然包括眾多應(yīng)答器的場(chǎng)景,在實(shí)際使用中,也有可能會(huì)存在誤報(bào)場(chǎng)景,針對(duì)誤報(bào)場(chǎng)景,算法可以提供定制優(yōu)化服務(wù),針對(duì)特定場(chǎng)景進(jìn)行算法的定制,保證檢測(cè)的準(zhǔn)確率。 商品直達(dá):<<應(yīng)答器異位檢測(cè)>> 交通物流解決方案來自:云商店到自己的IT平臺(tái)。 1、開發(fā)模型:模型開發(fā)可以在ModelArts服務(wù)中進(jìn)行,也可以在您的本地開發(fā)環(huán)境進(jìn)行,本地開發(fā)的模型需要上傳到華為云 OBS 服務(wù)。制作模型包可參見模型包規(guī)范介紹。 2、創(chuàng)建AI應(yīng)用:把模型文件和推理文件導(dǎo)入到ModelArts的模型倉(cāng)庫(kù)中,進(jìn)行版本化管理,并構(gòu)建為可運(yùn)行的AI應(yīng)用。來自:專題華為云計(jì)算 云知識(shí) 關(guān)系型數(shù)據(jù)庫(kù)和非關(guān)系模型數(shù)據(jù)庫(kù)的區(qū)別 關(guān)系型數(shù)據(jù)庫(kù)和非關(guān)系模型數(shù)據(jù)庫(kù)的區(qū)別 時(shí)間:2020-07-28 14:11:44 數(shù)據(jù)庫(kù) 關(guān)系型數(shù)據(jù)庫(kù)與非關(guān)系型數(shù)據(jù)庫(kù)的區(qū)別 1.不同的數(shù)據(jù)存儲(chǔ)方法。 關(guān)系數(shù)據(jù)庫(kù)和非關(guān)系數(shù)據(jù)庫(kù)之間的主要區(qū)別在于數(shù)據(jù)的存儲(chǔ)方式。關(guān)系數(shù)據(jù)自來自:百科云知識(shí) 什么是產(chǎn)品模型 什么是產(chǎn)品模型 時(shí)間:2020-09-09 14:43:48 產(chǎn)品模型用于描述設(shè)備具備的能力和特性。開發(fā)者通過定義產(chǎn)品模型,在 物聯(lián)網(wǎng)平臺(tái) 構(gòu)建一款設(shè)備的抽象模型,使平臺(tái)理解該款設(shè)備支持的服務(wù)、屬性、命令等信息,如顏色、開關(guān)等。當(dāng)定義完一款產(chǎn)品模型后,在進(jìn)行注冊(cè)設(shè)來自:百科Health)平臺(tái)是基于華為云AI和大數(shù)據(jù)技術(shù)優(yōu)勢(shì),為基因組分析、藥物研發(fā)和醫(yī)療影像三個(gè)領(lǐng)域提供的專業(yè)AI研發(fā)平臺(tái)。平臺(tái)提供大量相關(guān)模型、算法及數(shù)據(jù)資源,是一站式的醫(yī)療研發(fā)平臺(tái)。 醫(yī)療智能體 提供以下子服務(wù): 基因組分析:提供高性能、高可靠性、高性價(jià)比的基因測(cè)序計(jì)算、存儲(chǔ)、分析和AI能力支持,讓科研過程標(biāo)準(zhǔn)化、可執(zhí)行。來自:百科
- 深度強(qiáng)化學(xué)習(xí)模型優(yōu)化算法綜述
- 深度學(xué)習(xí)模型編譯技術(shù)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:演化策略與遺傳算法
- DL之模型調(diào)參:深度學(xué)習(xí)算法模型優(yōu)化參數(shù)之對(duì)深度學(xué)習(xí)模型的超參數(shù)采用網(wǎng)格搜索進(jìn)行模型調(diào)優(yōu)(建議收藏)
- 深度學(xué)習(xí)模型的參數(shù)和顯存占用計(jì)算
- 利用深度學(xué)習(xí)建立流失模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型