- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)在檢測(cè) 內(nèi)容精選 換一換
-
同時(shí)支持分布式事務(wù),同城跨AZ部署,數(shù)據(jù)0丟失,支持1000+的擴(kuò)展能力,PB級(jí)海量存儲(chǔ)。 快速 購(gòu)買(mǎi)GaussDB 數(shù)據(jù)庫(kù) 在 GaussDB數(shù)據(jù)庫(kù) 的管理控制臺(tái)購(gòu)買(mǎi)實(shí)例,目前, GaussDB 數(shù)據(jù)庫(kù)支持“按需計(jì)費(fèi)”和“包年/包月”計(jì)費(fèi)方式購(gòu)買(mǎi)。您可以根據(jù)業(yè)務(wù)需要定制相應(yīng)計(jì)算能力和存儲(chǔ)空間的GaussDB數(shù)據(jù)庫(kù)實(shí)例。來(lái)自:專(zhuān)題多線(xiàn)程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。 使用MindSpore進(jìn)行可視化調(diào)試調(diào)優(yōu)來(lái)自:專(zhuān)題
- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)在檢測(cè) 相關(guān)內(nèi)容
-
。如果數(shù)據(jù)滿(mǎn)足處理要求,則直接通過(guò)接口調(diào)用離線(xiàn)模型執(zhí)行器來(lái)進(jìn)行推理計(jì)算。在執(zhí)行過(guò)程中,流程編排器具有多節(jié)點(diǎn)調(diào)度和多進(jìn)程管理功能,負(fù)責(zé)計(jì)算進(jìn)程在設(shè)備端的運(yùn)行,并守護(hù)計(jì)算進(jìn)程,以及進(jìn)行相關(guān)執(zhí)行信息的統(tǒng)計(jì)匯總等。在模型執(zhí)行結(jié)束后,為主機(jī)上的應(yīng)用提供獲取輸出結(jié)果的功能。 華為云 面向未來(lái)來(lái)自:百科內(nèi)容審核-圖像有以下應(yīng)用場(chǎng)景: 視頻直播 在互動(dòng)直播場(chǎng)景中,成千上萬(wàn)個(gè)房間并發(fā)直播,人工審核直播內(nèi)容幾乎不可能?;趫D像審核能力,可對(duì)所有房間內(nèi)容實(shí)時(shí)監(jiān)控,識(shí)別可疑房間并進(jìn)行預(yù)警。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:視頻直播響應(yīng)速度速度小于0來(lái)自:百科
- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)在檢測(cè) 更多內(nèi)容
-
算法庫(kù)是提供開(kāi)箱可用的神經(jīng)網(wǎng)絡(luò)算法倉(cāng)庫(kù),模型庫(kù)是存儲(chǔ)和管理各類(lèi)型專(zhuān)用模型的組件;訓(xùn)練平臺(tái)是支撐模型研發(fā)生產(chǎn),包括訓(xùn)練任務(wù)管理、訓(xùn)練可視化分析、模型評(píng)估預(yù)測(cè)等功能;推理平臺(tái)用于支持模型推理和應(yīng)用集成,以API/SDK等服務(wù)化方式與業(yè)務(wù)應(yīng)用實(shí)現(xiàn)在線(xiàn)集成,支持在中心側(cè)推理或者邊緣側(cè)完成來(lái)自:其他
驗(yàn) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 快速迭代 持續(xù)快速的迭代文本詞庫(kù),及時(shí)識(shí)別新型不合規(guī)內(nèi)容 注冊(cè)昵稱(chēng)審核 對(duì)網(wǎng)站的用戶(hù)注冊(cè)信息進(jìn)行智能審核,過(guò)濾包含廣告、反動(dòng)、涉黃等內(nèi)容的用戶(hù)昵稱(chēng) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 海量詞庫(kù) 內(nèi)置海量詞庫(kù),支持各種匹配規(guī)則來(lái)自:百科
序員溝通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 在線(xiàn)學(xué)習(xí) 基于應(yīng)用服務(wù)網(wǎng)格的灰度發(fā)布 微認(rèn)證 在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各個(gè)系統(tǒng)需要頻繁地進(jìn)行改造升級(jí),通過(guò)灰度發(fā)布可以實(shí)現(xiàn)系統(tǒng)的在線(xiàn)發(fā)布和無(wú)損回退,降低系統(tǒng)發(fā)布風(fēng)險(xiǎn)。 在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各個(gè)系統(tǒng)來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S玫脑O(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)來(lái)自:百科
造個(gè)性化自適應(yīng)學(xué)習(xí)平臺(tái),實(shí)現(xiàn)課內(nèi)學(xué)習(xí)向課外學(xué)習(xí)的延展,幫助每個(gè)學(xué)生實(shí)現(xiàn)彈性有效的針對(duì)性自主學(xué)習(xí); 區(qū)域網(wǎng)絡(luò)學(xué)習(xí)中心功能框架 (2)家庭教育 通過(guò)建設(shè)家庭教育平臺(tái),讓家長(zhǎng)通過(guò)家庭教育的系統(tǒng)學(xué)習(xí),擁有親子教育能力、自我管理能力、經(jīng)營(yíng)幸福家庭的能力。 (3)老年開(kāi)放學(xué)院 老年教育作為終來(lái)自:云商店
華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來(lái)的方向, 云數(shù)據(jù)庫(kù) 是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理, 數(shù)據(jù)庫(kù)遷移 和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷來(lái)自:百科
通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 對(duì)軟件開(kāi)發(fā)人員來(lái)說(shuō),此規(guī)范可以保證軟件產(chǎn)品的質(zhì)量,可以作為和其他程序員溝通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 在線(xiàn)學(xué)習(xí) 基于應(yīng)用服務(wù)網(wǎng)格的灰度發(fā)布 微認(rèn)證 在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各來(lái)自:專(zhuān)題
人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)算時(shí)延低,可支持35路高清視頻解碼與實(shí)時(shí)AI推理 優(yōu)勢(shì) GPU Direct 完美支撐大數(shù)據(jù)在神經(jīng)網(wǎng)絡(luò)間傳輸 100GB IB網(wǎng)絡(luò) 支持GPU來(lái)自:專(zhuān)題
實(shí)踐,了解華為云大數(shù)據(jù)產(chǎn)品的使用方法,幫助商戶(hù)發(fā)掘潛在客戶(hù)。 ModelArts實(shí)現(xiàn)零售商客戶(hù)分群 客戶(hù)分群實(shí)現(xiàn)客戶(hù)的精準(zhǔn)化營(yíng)銷(xiāo)在各行業(yè)逐漸流行起來(lái),在批發(fā)零售業(yè)中的應(yīng)用價(jià)值更加明顯。本微認(rèn)證課程借助華為云ModelArts,實(shí)現(xiàn)客戶(hù)分群業(yè)務(wù)上云。 查看更多 收起 職業(yè)認(rèn)證 華為認(rèn)證云服務(wù)工程師HCIA-Cloud來(lái)自:專(zhuān)題
現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴(lài)于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴(lài)方面所開(kāi)展的一些研究工作。 課程簡(jiǎn)介 本課程介紹了在降低模型對(duì)特來(lái)自:百科
人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)算時(shí)延低,可支持35路高清視頻解碼與實(shí)時(shí)AI推理 優(yōu)勢(shì) GPU Direct 完美支撐大數(shù)據(jù)在神經(jīng)網(wǎng)絡(luò)間傳輸 100GB IB網(wǎng)絡(luò) 支持GPU來(lái)自:專(zhuān)題
- 深度學(xué)習(xí)(七)——卷積神經(jīng)網(wǎng)絡(luò)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)
- 動(dòng)手學(xué)深度學(xué)習(xí)之卷積神經(jīng)網(wǎng)絡(luò)(一)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第7篇:卷積神經(jīng)網(wǎng)絡(luò),3.1 卷積神經(jīng)網(wǎng)絡(luò)(CNN)原理【附代碼文檔】
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.7 內(nèi)外卷積運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.8 膨脹卷積運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——2.10 卷積面計(jì)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——1.2 卷積神經(jīng)網(wǎng)絡(luò)的形成和演變
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——1.6 卷積神經(jīng)網(wǎng)絡(luò)的平臺(tái)和工具