- 深度學(xué)習(xí)和大數(shù)據(jù) 內(nèi)容精選 換一換
-
景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。 課程簡介 本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能來自:百科面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動,一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于讓云無處不在,讓智能無所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊一元域名華為 云桌面 [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi)來自:百科
- 深度學(xué)習(xí)和大數(shù)據(jù) 相關(guān)內(nèi)容
-
較高算力和能好的。并且有大量的研究論文集中于如何將這些AI模型從云上部署到端側(cè),為AI模型創(chuàng)造更多的應(yīng)用場景和產(chǎn)業(yè)價值。 課程簡介 為了解決真實(shí)世界中的問題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則來自:百科
- 深度學(xué)習(xí)和大數(shù)據(jù) 更多內(nèi)容
-
面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動,一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于讓云無處不在,讓智能無所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊一元域名華為云桌面 [ 免費(fèi)體驗(yàn) 中心]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi)來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科華為云計(jì)算 云知識 數(shù)據(jù)大屏 數(shù)據(jù)大屏 時間:2020-12-10 17:16:31 數(shù)據(jù)大屏基于數(shù)據(jù)生成的數(shù)據(jù)看板,也稱為可視化項(xiàng)目、可視化應(yīng)用或大屏項(xiàng)目。 DLV 可以將數(shù)據(jù)由單一的數(shù)字轉(zhuǎn)化為各種動態(tài)的可視化圖標(biāo),從而實(shí)時地將數(shù)據(jù)展示給用戶。 鏈接:https://support來自:百科
- 【AI理論】深度學(xué)習(xí)筆記 | 第20講:再談三大深度學(xué)習(xí)框架TensorFlow、Keras和PyTorch
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)增強(qiáng)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2TensorFlow深度學(xué)習(xí)框
- 當(dāng)大數(shù)據(jù)深度學(xué)習(xí)失效時
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)標(biāo)準(zhǔn)化
- 當(dāng)大數(shù)據(jù)深度學(xué)習(xí)失效時
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.1.2 傳統(tǒng)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的對比