- 深度學(xué)習(xí)的基礎(chǔ)模型 內(nèi)容精選 換一換
-
將代碼目錄中除代碼以外的文件刪除或存放到其他目錄,保證代碼目錄大小不超過(guò)128MB,文件個(gè)數(shù)不超過(guò)4096個(gè)。 訓(xùn)練作業(yè)的“/cache”目錄是否安全? ModelArts訓(xùn)練作業(yè)的程序運(yùn)行在容器中,容器掛載的目錄地址是唯一的,只有運(yùn)行時(shí)的容器能訪(fǎng)問(wèn)到。因此訓(xùn)練作業(yè)的“/cache”是安全的。來(lái)自:專(zhuān)題標(biāo)準(zhǔn)化的IT服務(wù)接口,實(shí)現(xiàn)面向利舊IT基礎(chǔ)設(shè)施的“融合”。 通過(guò)融合架構(gòu),單廠(chǎng)家計(jì)算、存儲(chǔ)與網(wǎng)絡(luò)資源的垂直融合, 提供模塊化、一站式、高性能、性?xún)r(jià)比最優(yōu)的、面向新建IT基礎(chǔ)設(shè)施的交付模式。 無(wú)論IT架構(gòu)如何螺旋式演進(jìn), 客戶(hù)價(jià)值和驅(qū)動(dòng)力體現(xiàn)在: 1、更低的TCO 2、更高的業(yè)務(wù)部署與生命周期管理效率來(lái)自:百科
- 深度學(xué)習(xí)的基礎(chǔ)模型 相關(guān)內(nèi)容
-
云知識(shí) 數(shù)據(jù)模型類(lèi)型的對(duì)比 數(shù)據(jù)模型類(lèi)型的對(duì)比 時(shí)間:2021-05-21 11:05:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)發(fā)展過(guò)程中產(chǎn)生過(guò)三種基本的數(shù)據(jù)模型:層次模型、網(wǎng)狀模型和關(guān)系模型。本文主要從數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)操作、數(shù)據(jù)聯(lián)系及優(yōu)缺點(diǎn)幾個(gè)方面進(jìn)行對(duì)比分析。 層次模型和網(wǎng)狀模型查詢(xún)效來(lái)自:百科華為云計(jì)算 云知識(shí) CNCF的項(xiàng)目成熟度模型 CNCF的項(xiàng)目成熟度模型 時(shí)間:2021-06-30 18:22:10 CNCF的項(xiàng)目成熟度模型如下圖所示: 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在?????????????????????????????????????????來(lái)自:百科
- 深度學(xué)習(xí)的基礎(chǔ)模型 更多內(nèi)容
-
課程簡(jiǎn)介 人工智能的技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,本課程為大家介紹AI中所用到的數(shù)學(xué)基礎(chǔ)知識(shí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握線(xiàn)性代數(shù)的基礎(chǔ)知識(shí)及應(yīng)用。 2、掌握概率論與數(shù)理統(tǒng)計(jì)的基礎(chǔ)知識(shí)及應(yīng)用。 3、理解信息熵與基尼系數(shù)的相關(guān)知識(shí)。 4、掌握常用的最優(yōu)化算法及應(yīng)用。來(lái)自:百科不一樣的,應(yīng)用難以對(duì)接到設(shè)備,而在標(biāo)準(zhǔn)物模型下,每個(gè)設(shè)備都對(duì)應(yīng)一個(gè)統(tǒng)一的標(biāo)準(zhǔn)物模型,它對(duì)外提供一致的接口,可以直接對(duì)應(yīng)應(yīng)用。 標(biāo)準(zhǔn)物模型可以任意組合產(chǎn)生新的模型,比如可以將攝像頭和燈組裝在一起,組成一個(gè)帶攝像頭的燈,組合后的復(fù)雜物仍然繼承了基礎(chǔ)物的模型,既能夠滿(mǎn)足復(fù)雜場(chǎng)景的需要,也能夠保持其標(biāo)準(zhǔn)模型與應(yīng)用進(jìn)行對(duì)接。來(lái)自:百科云知識(shí) 推理模型的遷移與調(diào)優(yōu) 推理模型的遷移與調(diào)優(yōu) 時(shí)間:2020-12-08 10:39:19 本課程主要介紹如何將第三方框架訓(xùn)練出來(lái)的模型轉(zhuǎn)換成昇騰專(zhuān)用模型,并進(jìn)行調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開(kāi)發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀+實(shí)戰(zhàn)演示,使學(xué)員學(xué)會(huì)使用模型轉(zhuǎn)換工具遷移所需要的預(yù)訓(xùn)練模型。來(lái)自:百科言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線(xiàn)程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:專(zhuān)題言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線(xiàn)程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:專(zhuān)題華勝信泰xigema數(shù)據(jù)庫(kù)管理系統(tǒng) 眾陽(yáng)遠(yuǎn)程會(huì)診系統(tǒng) 華為云云商店 華為云云商店,是華為云的線(xiàn)上應(yīng)用商城。在云服務(wù)的生態(tài)系統(tǒng)中,云商店與合作伙伴致力于為用戶(hù)提供優(yōu)質(zhì)、便捷的基于云計(jì)算、大數(shù)據(jù)業(yè)務(wù)的軟件、服務(wù)和解決方案,滿(mǎn)足華為云用戶(hù)快速上云和快速開(kāi)展業(yè)務(wù)的訴求。 了解詳情幫助文檔進(jìn)入云商店 [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開(kāi)啟云上之旅免費(fèi)來(lái)自:云商店課程涵蓋了云端環(huán)境的架構(gòu)設(shè)計(jì)、云服務(wù)的介紹、應(yīng)用架構(gòu)的演進(jìn)過(guò)程等內(nèi)容,并通過(guò)實(shí)際案例講解如何在云端環(huán)境部署一個(gè)同城雙可用區(qū)的網(wǎng)站。 課程目標(biāo) 通過(guò)課程的學(xué)習(xí),理解做架構(gòu)設(shè)計(jì)的基礎(chǔ)知識(shí),通過(guò)實(shí)際案例的講解學(xué)會(huì)如何在實(shí)際業(yè)務(wù)中考慮架構(gòu)的設(shè)計(jì),從而開(kāi)啟將業(yè)務(wù)往云端遷移的新篇章。 課程大綱來(lái)自:百科華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員 1、希望成為企業(yè)AI工程師的人員來(lái)自:百科數(shù)據(jù)庫(kù)概念模型的特點(diǎn) 數(shù)據(jù)庫(kù)概念模型的特點(diǎn) 時(shí)間:2021-06-02 10:09:02 數(shù)據(jù)庫(kù) 概念模型是高層次的抽象模型,獨(dú)立于任何一種特定的數(shù)據(jù)庫(kù)產(chǎn)品,不會(huì)受到任何數(shù)據(jù)庫(kù)產(chǎn)品特性的約束和限制。概念模型的主要特點(diǎn): 能真實(shí)、充分地反映現(xiàn)實(shí)世界,包括事物和事物之間的聯(lián)系,是現(xiàn)實(shí)世界的真實(shí)模型;來(lái)自:百科
- 深度學(xué)習(xí)基礎(chǔ):7.模型的保存與加載/學(xué)習(xí)率調(diào)度
- 深度學(xué)習(xí)模型編譯技術(shù)
- MCP零基礎(chǔ)學(xué)習(xí)(6)|與大型語(yǔ)言模型(LLM)的深度融合
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 利用深度學(xué)習(xí)建立流失模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 深度學(xué)習(xí)基礎(chǔ)與技巧