- 深度學(xué)習(xí) 深度神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開(kāi)發(fā)工作 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來(lái)自:專(zhuān)題
- 深度學(xué)習(xí) 深度神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 服務(wù)咨詢來(lái)自:專(zhuān)題1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來(lái)自:專(zhuān)題
- 深度學(xué)習(xí) 深度神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
成本費(fèi)用“深度智控”是一家行業(yè)領(lǐng)先的深度節(jié)能與數(shù)智化創(chuàng)新服務(wù)商,由一支來(lái)自清華大學(xué)和美國(guó)伯克利國(guó)家實(shí)驗(yàn)室的創(chuàng)始團(tuán)隊(duì)于2018年8月創(chuàng)立。以“讓每度電創(chuàng)造更多美好”為使命,專(zhuān)注于研發(fā)新一代的深度節(jié)能與物聯(lián)智控前沿產(chǎn)品與技術(shù),為工業(yè)與建筑節(jié)能行業(yè)賦能,實(shí)現(xiàn)機(jī)電能源系統(tǒng)的深度節(jié)能,并助來(lái)自:其他對(duì)媒體視頻中的公眾人物進(jìn)行分析,準(zhǔn)確識(shí)別視頻中出現(xiàn)的政治人物、影視明星等名人 優(yōu)勢(shì) 簡(jiǎn)單易用 操作簡(jiǎn)單,輸入視頻即可得到人物分析結(jié)果 準(zhǔn)確識(shí)別 基于深度學(xué)習(xí)的 人臉識(shí)別 ,自動(dòng)識(shí)別視頻中出現(xiàn)的政治人物、影視明星等名人 快速高效 適用于多種視頻編碼格式,快速分析視頻人物,提高用戶瀏覽效率 建議搭配使用來(lái)自:百科計(jì)算引擎由開(kāi)發(fā)者進(jìn)行自定義來(lái)完成所需要的具體功能。 通過(guò)流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過(guò)濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來(lái)源。來(lái)自:百科低時(shí)延場(chǎng)景 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和低來(lái)自:百科通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 服務(wù)咨詢來(lái)自:專(zhuān)題SIS以開(kāi)放API的方式提供給用戶,您可以參考《快速入門(mén)》學(xué)習(xí)并使用SIS服務(wù)。 使用方式 如果您是一個(gè)開(kāi)發(fā)工程師,熟悉代碼編寫(xiě),想要直接調(diào)用SIS的API或SDK使用服務(wù),您可以參考《API參考》或《SDK參考》獲取詳情。 由淺入深學(xué)習(xí) 您可以參考成長(zhǎng)地圖,由淺入深學(xué)習(xí)使用SIS。 錄音轉(zhuǎn)文字 -文字轉(zhuǎn)換語(yǔ)音來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 內(nèi)容審核 內(nèi)容審核 時(shí)間:2020-10-30 15:37:36 內(nèi)容審核( Content Moderation )基于基于深度神經(jīng)網(wǎng)絡(luò)模型,實(shí)現(xiàn)對(duì)圖像、文本、視頻內(nèi)容的智能檢測(cè)檢測(cè),可自動(dòng)進(jìn)行涉黃、廣告、涉政涉暴、涉政敏感人物、違禁品和灌水文本等內(nèi)容的檢測(cè),幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),大幅降低人工審核成本。來(lái)自:百科署模型。 2、深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)實(shí)施交付結(jié)合智算服務(wù)器、存儲(chǔ)、網(wǎng)絡(luò)等硬件環(huán)境,設(shè)計(jì)深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)部署架構(gòu),并根據(jù)用戶要求完成深度學(xué)習(xí)平臺(tái)軟件的調(diào)試、安裝和部署,保證軟件功能長(zhǎng)期穩(wěn)定運(yùn)行,包括設(shè)備安裝、環(huán)境配置、網(wǎng)絡(luò)配置、安裝部署、功能測(cè)試等。 3、深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)運(yùn)行來(lái)自:其他需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科和大多數(shù)加速器運(yùn)行時(shí)軟件棧的構(gòu)造基本一致,昇騰AI處理器中的運(yùn)行管理器、驅(qū)動(dòng)和任務(wù)調(diào)度器緊密配合,共同有序完成任務(wù)分發(fā)至相應(yīng)硬件資源并執(zhí)行。這個(gè)調(diào)度過(guò)程為深度神經(jīng)網(wǎng)絡(luò)計(jì)算過(guò)程中緊密有序的輸送了任務(wù),保證了任務(wù)執(zhí)行的連續(xù)性和高效性。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的來(lái)自:百科
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)入門(mén)之神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)(七)——卷積神經(jīng)網(wǎng)絡(luò)
- 深度神經(jīng)網(wǎng)絡(luò)--4.1 深度學(xué)習(xí)系統(tǒng)面臨的主要挑戰(zhàn)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.4.3 神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)垃圾分類(lèi)系統(tǒng) - 深度學(xué)習(xí) 神經(jīng)網(wǎng)絡(luò) 圖像識(shí)別 垃圾分類(lèi)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)修煉(六)——神經(jīng)網(wǎng)絡(luò)分類(lèi)問(wèn)題