- 深度學(xué)習(xí) 基金文本 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí) 基金文本 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí) 基金文本 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科華為云計(jì)算 云知識(shí) 內(nèi)容審核 -文本是什么 內(nèi)容審核-文本是什么 時(shí)間:2020-09-16 10:28:34 內(nèi)容審核-文本Moderation(Text),基于華為自研的深度學(xué)習(xí)和內(nèi)容審核模型,可自動(dòng)識(shí)別出文本中出現(xiàn)的涉政、色情、廣告、辱罵、灌水等內(nèi)容,幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),凈化網(wǎng)絡(luò)環(huán)境,提升用戶體驗(yàn)來自:百科字識(shí)別 識(shí)別精度高: 采用先進(jìn)的深度學(xué)習(xí)算法,優(yōu)化業(yè)務(wù)場(chǎng)景,文字識(shí)別精度高 支持復(fù)雜背景: 支持蓋章、錯(cuò)行、傾斜等場(chǎng)景的 票據(jù)識(shí)別 在線文本校對(duì) 文本校對(duì)常見問題解答 文本校對(duì)常見問題解答 文本校對(duì)購買套餐包后,為什么會(huì)出現(xiàn)額外的計(jì)費(fèi)或欠費(fèi) 1、文本校對(duì)套餐包額度已使用完 套餐包額來自:專題華為云計(jì)算 云知識(shí) 內(nèi)容審核-文本應(yīng)用場(chǎng)景 內(nèi)容審核-文本應(yīng)用場(chǎng)景 時(shí)間:2020-09-16 10:35:28 內(nèi)容審核-文本Moderation(Text),基于華為自研的深度學(xué)習(xí)和內(nèi)容審核模型,可自動(dòng)識(shí)別出文本中出現(xiàn)的涉政、色情、廣告、辱罵、灌水等內(nèi)容,幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),凈化網(wǎng)絡(luò)環(huán)境,提升用戶體驗(yàn)來自:百科準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:單張 圖像識(shí)別 速度小于0.1秒。 內(nèi)容審核-文本 內(nèi)容審核-文本有以下應(yīng)用場(chǎng)景: 電商評(píng)論篩查 審核電商網(wǎng)站產(chǎn)品評(píng)論,智能識(shí)別有色情、涉政、灌水等違規(guī)評(píng)論,保證良好用戶體驗(yàn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來自:百科準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:單張圖像識(shí)別速度小于0.1秒。 內(nèi)容審核-文本 內(nèi)容審核-文本有以下應(yīng)用場(chǎng)景: 電商評(píng)論篩查 審核電商網(wǎng)站產(chǎn)品評(píng)論,智能識(shí)別有色情、涉政、灌水等違規(guī)評(píng)論,保證良好用戶體驗(yàn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科華為云堅(jiān)持構(gòu)建標(biāo)準(zhǔn)化、開源、開放的云原生技術(shù)平臺(tái)。我們不僅僅深度參與社區(qū)內(nèi)包括K8s、Istio等核心項(xiàng)目,而且將 華為云產(chǎn)品 的核心能力對(duì)外開放。 我們分別于2018年、2019年開源了KubeEdge邊緣計(jì)算項(xiàng)目、Volcano批量計(jì)算項(xiàng)目,并捐獻(xiàn)給了CNCF基金會(huì),得到了社區(qū)的積極響應(yīng)。這兩個(gè)項(xiàng)目目來自:百科Customization,ASRC):基于深度學(xué)習(xí)技術(shù),提供針對(duì)特定領(lǐng)域(如快遞行業(yè))優(yōu)化的語音識(shí)別能力,并可自定義語言模型。 定制語音識(shí)別包含 一句話識(shí)別 、錄音文件識(shí)別功能。支持熱詞定制。 實(shí)時(shí)語音轉(zhuǎn)寫(Real-time ASR,RASR):將連續(xù)的音頻流實(shí)時(shí)轉(zhuǎn)換成文本,使語音識(shí)別更加快速。 語音識(shí)別(Automatic來自:百科圖像識(shí)別( Image Recognition ),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容 查看更多 一句話識(shí)別 短語音識(shí)別將口述音頻轉(zhuǎn)換為文本,通過API調(diào)用識(shí)別不超過一分鐘的不同音頻源發(fā)來來自:專題物聯(lián)網(wǎng)學(xué)習(xí)入門 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握物聯(lián)網(wǎng)前沿技術(shù) 物聯(lián)網(wǎng)知識(shí)圖譜 在線課程 01 初學(xué)入門課程、開發(fā)者課程、合作伙伴課程 初學(xué)入門課程、開發(fā)者課程、合作伙伴課程 動(dòng)手實(shí)驗(yàn) 02 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 初學(xué)入門 初學(xué)入門來自:專題
- 深度學(xué)習(xí)在文本情感分析中的應(yīng)用
- HTML深度解析:更改文本顏色
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:語言模型與文本生成
- 探討場(chǎng)景文本識(shí)別中的語言模型:基于深度學(xué)習(xí)的解決思路
- 貝葉斯學(xué)習(xí)舉例--學(xué)習(xí)分類文本
- 基于深度學(xué)習(xí)的文本信息提取方法研究(使用 PyTorch 和 TextCNN 框架)
- 通過深度學(xué)習(xí)增強(qiáng)文本生成模型:GPT-4與其應(yīng)用
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 深度學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò):實(shí)現(xiàn)圖像生成和文本生成
- 深度學(xué)習(xí)