- 認(rèn)識的高度 學(xué)習(xí)的深度 實踐的度 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科云知識 基于深度學(xué)習(xí)算法的語音識別 基于深度學(xué)習(xí)算法的語音識別 時間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實戰(zhàn)的同時,更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科
- 認(rèn)識的高度 學(xué)習(xí)的深度 實踐的度 相關(guān)內(nèi)容
-
的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科華為云計算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
- 認(rèn)識的高度 學(xué)習(xí)的深度 實踐的度 更多內(nèi)容
-
2. 華為面向IT資源運營的方法論; 3. 華為對未來政企IT服務(wù)發(fā)展方向的看法和實踐; 4. 華為云Stack 政企IT管理使能平臺 ManageOne的開放性。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動,一切皆服務(wù)。來自:百科
- 對深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識
- 深度學(xué)習(xí)中的遷移學(xué)習(xí):應(yīng)用與實踐
- 《智能系統(tǒng)與技術(shù)叢書 深度學(xué)習(xí)實踐:基于Caffe的解析》—1.3深度學(xué)習(xí)的未來趨勢
- 走近深度學(xué)習(xí),認(rèn)識MoXing:優(yōu)化器配置
- 走近深度學(xué)習(xí),認(rèn)識MoXing:模型定義教程
- 《智能系統(tǒng)與技術(shù)叢書 深度學(xué)習(xí)實踐:基于Caffe的解析》—1深度學(xué)習(xí)簡介
- 人工智能中的深度學(xué)習(xí):原理與實踐
- 走近深度學(xué)習(xí),認(rèn)識MoXing:數(shù)據(jù)輸入教程
- 走近深度學(xué)習(xí),認(rèn)識MoXing:初識華為云ModelArts的王牌利器 — MoXing
- 一分鐘帶你認(rèn)識深度學(xué)習(xí)中的知識蒸餾