- 強(qiáng)化學(xué)習(xí)加深度學(xué)習(xí)訓(xùn)練網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科HiLens Kit上運(yùn)行。 ModelArts自動(dòng)學(xué)習(xí)功能訓(xùn)練生成的模型,暫時(shí)不支持用于Huawei HiLens平臺(tái) 。 AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Tra來(lái)自:百科
- 強(qiáng)化學(xué)習(xí)加深度學(xué)習(xí)訓(xùn)練網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
時(shí)間:2020-12-22 16:51:07 面向有AI基礎(chǔ)的開(kāi)發(fā)者,提供機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的算法開(kāi)發(fā)及部署全功能,包含數(shù)據(jù)處理,模型開(kāi)發(fā),模型訓(xùn)練,模型管理和部署上線流程。涉及計(jì)費(fèi)項(xiàng)包括:模型開(kāi)發(fā)環(huán)境(Notebook),模型訓(xùn)練(訓(xùn)練作業(yè)、可視化作業(yè)),部署上線(在線服務(wù))。AI全流程開(kāi)發(fā)支持來(lái)自:百科、openGauss數(shù)據(jù)庫(kù)基礎(chǔ)知識(shí),還能在心得專(zhuān)區(qū)分享自己的學(xué)習(xí)體會(huì)。學(xué)生和講師、學(xué)生之間都能深度互動(dòng),充分提升學(xué)習(xí)趣味性和積極性。 03 課后考試,即時(shí)了解學(xué)習(xí)效果 訓(xùn)練營(yíng)在課程結(jié)束后,會(huì)組織線上隨堂考試,檢測(cè)學(xué)生學(xué)習(xí)效果。學(xué)生可通過(guò)電腦、手機(jī)等多設(shè)備隨時(shí)隨地參加考試??荚嚍橹?來(lái)自:百科
- 強(qiáng)化學(xué)習(xí)加深度學(xué)習(xí)訓(xùn)練網(wǎng)絡(luò) 更多內(nèi)容
-
優(yōu)秀的超算生態(tài):擁有完善的超算生態(tài)環(huán)境,用戶(hù)可以構(gòu)建靈活彈性、高性能、高性?xún)r(jià)比的計(jì)算平臺(tái)。大量的HPC應(yīng)用程序和深度學(xué)習(xí)框架已經(jīng)可以運(yùn)行在P1實(shí)例上。 常規(guī)支持軟件列表 P1型云服務(wù)器主要用于計(jì)算加速場(chǎng)景,例如深度學(xué)習(xí)訓(xùn)練、推理、科學(xué)計(jì)算、分子建模、地震分析等場(chǎng)景。應(yīng)用軟件如果使用到GPU的CUDA并行計(jì)算來(lái)自:百科視頻檢測(cè) 人工智能 機(jī)器視覺(jué) 商品介紹 電瓶車(chē)起火事件時(shí)有發(fā)生,為保證樓宇公共安全,禁止電瓶車(chē)進(jìn)入,該產(chǎn)品采用AI智能算法,利用卷積神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)深度學(xué)習(xí)實(shí)現(xiàn)電瓶車(chē)檢測(cè)功能。 電梯內(nèi)電瓶車(chē)檢測(cè)商品介紹: 應(yīng)用場(chǎng)景: 隨著電瓶車(chē)越來(lái)越受歡迎,電瓶車(chē)起火事件也時(shí)有發(fā)生。特別當(dāng)電瓶車(chē)被放置來(lái)自:云商店ModelArts為用戶(hù)提供了多種常見(jiàn)的預(yù)置鏡像,但是當(dāng)用戶(hù)對(duì)深度學(xué)習(xí)引擎、開(kāi)發(fā)庫(kù)有特殊需求場(chǎng)景的時(shí)候,預(yù)置鏡像已經(jīng)不能滿(mǎn)足用戶(hù)需求。ModelArts提供自定義鏡像功能支持用戶(hù)自定義運(yùn)行引擎。 ModelArts為用戶(hù)提供了多種常見(jiàn)的預(yù)置鏡像,但是當(dāng)用戶(hù)對(duì)深度學(xué)習(xí)引擎、開(kāi)發(fā)庫(kù)有特殊需求場(chǎng)景的時(shí)候,預(yù)置來(lái)自:專(zhuān)題精準(zhǔn)圖文描述,對(duì)齊語(yǔ)義理解,智能語(yǔ)境識(shí)別。 更具自然美感 多模態(tài)多尺度訓(xùn)練,逼近自然美感生成內(nèi)容。 更強(qiáng)泛化性 強(qiáng)大泛化能力,適應(yīng)各種復(fù)雜的應(yīng)用場(chǎng)景和用戶(hù)需求。 全棧自主可控 全棧自主可控,基于昇騰云服務(wù),技術(shù)完全自主可控。 支持二次訓(xùn)練 支持行業(yè)客戶(hù)二次訓(xùn)練專(zhuān)屬模型,打造大模型體驗(yàn)。 盤(pán)古預(yù)測(cè)大模型產(chǎn)品功能來(lái)自:專(zhuān)題開(kāi)發(fā)人員的福音。學(xué)習(xí)本課程,帶你了解AI模型訓(xùn)練,不會(huì)編程、不會(huì)算法、不會(huì)高數(shù),一樣可以構(gòu)建出自己專(zhuān)屬的AI模型。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:AI如何滿(mǎn)足定制化需求、從Idea到落地開(kāi)發(fā)者所面臨的挑戰(zhàn)、極“快”致“簡(jiǎn)單”的模型訓(xùn)練。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握AI模型訓(xùn)練原理及實(shí)現(xiàn)過(guò)程。來(lái)自:百科CR服務(wù)二次開(kāi)發(fā)案例介紹、 基于ModelArts的 OCR 模型訓(xùn)練教程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、熟悉文字識(shí)別行業(yè)趨勢(shì)挑戰(zhàn)及相關(guān)場(chǎng)景解決辦法; 2、熟悉華為云文字識(shí)別OCR知識(shí)體系; 3、通過(guò)模型訓(xùn)練,了解OCR開(kāi)發(fā)邏輯。 課程大綱 第1章 OCR服務(wù)介紹 第2章來(lái)自:百科云知識(shí) 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 時(shí)間:2021-04-08 11:37:24 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 使用指南 商品鏈接:優(yōu)學(xué)院平臺(tái);服務(wù)商:北京文華在線教育科技股份有限公司 雖然購(gòu)買(mǎi)學(xué)習(xí)卡的操作比較簡(jiǎn)單,但是同來(lái)自:云商店
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:強(qiáng)化學(xué)習(xí)與深度Q網(wǎng)絡(luò)(DQN)
- 【強(qiáng)化學(xué)習(xí)基礎(chǔ)】深度強(qiáng)化學(xué)習(xí)介紹
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 強(qiáng)化學(xué)習(xí)算法中深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 強(qiáng)化學(xué)習(xí) 游戲訓(xùn)練 谷歌足球 vizdoom
- 深度強(qiáng)化學(xué)習(xí)中的深度神經(jīng)網(wǎng)絡(luò)優(yōu)化策略:挑戰(zhàn)與解決方案
- 深度學(xué)習(xí)+遷移學(xué)習(xí)+強(qiáng)化學(xué)習(xí)的區(qū)別分享
- 深度強(qiáng)化學(xué)習(xí)模型優(yōu)化算法綜述