- 簡單的深度學(xué)習(xí)算法 內(nèi)容精選 換一換
-
,而不需要關(guān)心底層的技術(shù)。同時(shí),ModelArts支持Tensorflow、PyTorch、MindSpore等主流開源的AI開發(fā)框架,也支持開發(fā)者使用自研的算法框架,匹配您的使用習(xí)慣。 ModelArts的理念就是讓AI開發(fā)變得更簡單、更方便。 面向不同經(jīng)驗(yàn)的AI開發(fā)者,提供便來自:專題華為云好望商城交通事件檢測(cè)算法,服務(wù)商: 前端科技; 采用人工智能AI智能算法,可自動(dòng)檢測(cè)攝像機(jī)監(jiān)測(cè)范圍內(nèi)的逆行事件、停車事件、行人事件、拋灑物事件、擁堵事件、機(jī)動(dòng)車駛離事件、交通事故事件等。 商品介紹 1、算法上采用最新的深度學(xué)習(xí)模式,徹底解決傳統(tǒng)事件檢測(cè)設(shè)備的誤報(bào)和漏報(bào)問題,提高設(shè)備的可靠性,提高設(shè)備預(yù)警的實(shí)時(shí)性;來自:云商店
- 簡單的深度學(xué)習(xí)算法 相關(guān)內(nèi)容
-
很多企業(yè)培訓(xùn)成本高、效果不佳,最關(guān)鍵的原因是人崗課不匹配。企業(yè)人才質(zhì)量層次不齊,崗位不同,每個(gè)員工的培訓(xùn)路徑和學(xué)習(xí)資源就不盡相同。 時(shí)習(xí)知“學(xué)習(xí)地圖”可以解決人崗課匹配問題,讓企業(yè)精準(zhǔn)有效的開展培訓(xùn)業(yè)務(wù)。管理員根據(jù)不同崗位、不同職級(jí)員工的崗位人才要求,定制能力評(píng)估模型和學(xué)習(xí)計(jì)劃,創(chuàng)建不同的學(xué)習(xí)地圖,給員工來自:百科提供多種預(yù)置模型,開源模型想用就用。 模型超參自動(dòng)優(yōu)化,簡單快速。 零代碼開發(fā),簡單操作訓(xùn)練出自己的模型。 支持模型一鍵部署到云、邊、端。 高性能 自研MoXing深度學(xué)習(xí)框架,提升算法開發(fā)效率和訓(xùn)練速度。 優(yōu)化深度模型推理中GPU的利用率,加速云端在線推理。 可生成在Ascend芯片上運(yùn)行的模型,實(shí)現(xiàn)高效端邊推理。來自:百科
- 簡單的深度學(xué)習(xí)算法 更多內(nèi)容
-
視頻標(biāo)簽 (簡稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類、人物識(shí)別、 語音識(shí)別 、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)來自:百科桶標(biāo)簽用于標(biāo)識(shí) OBS 中的桶,以此來達(dá)到對(duì)OBS中的桶進(jìn)行分類的目的。 當(dāng)為桶添加標(biāo)簽時(shí),該桶上所有請(qǐng)求產(chǎn)生的計(jì)費(fèi)話單里都會(huì)帶上這些標(biāo)簽,從而可以針對(duì)話單報(bào)表做分類篩選,進(jìn)行更詳細(xì)的成本分析。例如:某個(gè)應(yīng)用程序在運(yùn)行過程會(huì)往桶里上傳數(shù)據(jù),我們可以用應(yīng)用名稱做為標(biāo)簽,設(shè)置到被使用的桶上。在分析來自:專題售賣機(jī)的智能化運(yùn)營,是一個(gè)貫穿數(shù)據(jù)開發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 開發(fā)者進(jìn)階課程 《EC-IoT物聯(lián)網(wǎng)技術(shù)開發(fā)實(shí)戰(zhàn)》 EC-IoT是將對(duì)實(shí)時(shí)性、安全性和可靠性有嚴(yán)格要求的應(yīng)用部署在靠近數(shù)據(jù)源頭的網(wǎng)絡(luò)邊緣節(jié)點(diǎn)(如網(wǎng)關(guān))上,讓數(shù)據(jù)在最短的時(shí)間內(nèi)得到分析和處理,將私密性數(shù)據(jù)限來自:專題企業(yè)上云時(shí)會(huì)面臨云環(huán)境下的安全挑戰(zhàn),如何應(yīng)對(duì)非法入侵顯得尤為重要,微認(rèn)證通過對(duì)主機(jī)進(jìn)行安全監(jiān)測(cè),識(shí)別病毒并查殺隔離,保證企業(yè)主機(jī)正常運(yùn)行 ¥88.00 立即購買 Web暴力破解漏洞挖掘 大數(shù)據(jù)時(shí)代,數(shù)據(jù)泄露事件愈發(fā)的頻繁和嚴(yán)重;暴力破解仍是安全事件的“高發(fā)地”,利用弱口令進(jìn)行暴力破解攻擊的安全事件占近年來年安全事件總數(shù)的33%來自:專題
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 深度學(xué)習(xí)經(jīng)典算法的詳細(xì)介紹
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 深度學(xué)習(xí)經(jīng)典算法 | 遺傳算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 粒子群算法詳解
- 深度學(xué)習(xí)算法中的 遷移學(xué)習(xí)(Transfer Learning)
- 深度學(xué)習(xí)經(jīng)典算法 | 蟻群算法解析
- 深度學(xué)習(xí)算法:開啟智能時(shí)代的鑰匙
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解