- 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像分割 內(nèi)容精選 換一換
-
來自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、語音識(shí)別、自然語言處理等其他領(lǐng)域。來自:百科
- 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像分割 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像分割 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
領(lǐng)域的模型開發(fā)能力。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、熟練使用華為云ModelArts一站式 AI開發(fā)平臺(tái) ; 2、系統(tǒng)、完整地了解多項(xiàng)AI領(lǐng)域的基礎(chǔ)知識(shí); 3、學(xué)習(xí)多項(xiàng)AI領(lǐng)域的經(jīng)典算法; 4、掌握一定的模型調(diào)優(yōu)能力,能自己動(dòng)手優(yōu)化模型; 課程大綱 第1章 圖像分類 第2章來自:百科
py”結(jié)尾的文件。 文件數(shù)(含文件、文件夾數(shù)量)不超過1024個(gè)。 文件總大小不超過5GB。 ModelArts訓(xùn)練好后的模型如何獲?。?使用自動(dòng)學(xué)習(xí)產(chǎn)生的模型只能在ModelArts上部署上線,無法下載至本地使用。 使用自定義算法或者訂閱算法訓(xùn)練生成的模型,會(huì)存儲(chǔ)至用戶指定的 OBS 路徑中,供用戶下載。來自:專題
量非常大。 評估病情,醫(yī)生需要精準(zhǔn)的測量病灶體積,需對大量的二維影像進(jìn)行病灶區(qū)域勾勒,耗費(fèi)大量的精力(時(shí)間以小時(shí)級別計(jì)數(shù))。 方案優(yōu)勢 該場景下, 醫(yī)療智能體 具備的方案優(yōu)勢如下: 病灶的智能識(shí)別與分割。 病灶體積的自動(dòng)精準(zhǔn)測量,并與解剖學(xué)位置對應(yīng)。 對分析結(jié)果自動(dòng)三維重建,直觀呈現(xiàn),方便指導(dǎo)病人用藥治療。來自:百科
一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測、音頻分割、文本分類等多個(gè)標(biāo)來自:百科
- 【圖像分割】走進(jìn)基于深度學(xué)習(xí)的圖像分割
- 【醫(yī)學(xué)圖像分割】 基于matlab GVF算法醫(yī)學(xué)圖像分割【含Matlab源碼 1213期】
- 基于深度學(xué)習(xí)的圖像分割技術(shù)及應(yīng)用
- 深度學(xué)習(xí)實(shí)戰(zhàn)(六):使用 PyTorch 進(jìn)行 3D 醫(yī)學(xué)圖像分割
- 【圖像分割】基于matlab 2D水平集三維醫(yī)學(xué)圖像分割【含Matlab源碼 584期】
- 深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用
- 基于聚類的“圖像分割”
- 【圖像分割】基于matlab GUI二值化+灰白質(zhì)醫(yī)學(xué)影像分割【含Matlab源碼 184期】
- 基于深度學(xué)習(xí)的圖像語義分割(Deep Learning-based Image Semantic Segmentation)
- 生物醫(yī)學(xué)影像自適應(yīng)全自動(dòng)深度學(xué)習(xí)分割網(wǎng)絡(luò)nnU-net詳解