- 基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法 內(nèi)容精選 換一換
-
來(lái)自:百科對(duì)低空?qǐng)鼍爸?span style='color:#C7000B'>的煙霧火焰目標(biāo)進(jìn)行檢測(cè), 并定位目標(biāo)在畫面中的位置,進(jìn)行及時(shí)有效的報(bào)警。 查看詳情 煤氣罐識(shí)別 煤氣罐檢測(cè)算法主要針對(duì)出現(xiàn)在監(jiān)測(cè)視頻畫面中的限制區(qū)域進(jìn)行煤氣罐的檢測(cè), 若檢測(cè)到視頻畫面中存在煤氣罐,立即進(jìn)行報(bào)警. 該算法可有效避免因煤氣罐的不合理使用及放置造成的安全隱患.來(lái)自:專題
- 基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法 相關(guān)內(nèi)容
-
務(wù)系統(tǒng)。實(shí)現(xiàn)客戶人力和IT支出成本降低 可定制化 針對(duì)客戶的特定場(chǎng)景需求,提供定制化的場(chǎng)景識(shí)別服務(wù),使得識(shí)別結(jié)果更準(zhǔn)確,滿足客戶業(yè)務(wù)場(chǎng)景 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科Computing)技術(shù)的發(fā)展已經(jīng)成為當(dāng)今科技領(lǐng)域的熱點(diǎn)之一。AIGC技術(shù)的發(fā)展可以追溯到人工智能和圖形計(jì)算兩個(gè)領(lǐng)域的發(fā)展歷程。人工智能技術(shù)的興起,使得計(jì)算機(jī)能夠模擬人類的智能行為,而圖形計(jì)算技術(shù)的進(jìn)步,則賦予了計(jì)算機(jī)處理視覺信息的能力。這兩者的結(jié)合,為AIGC技術(shù)的誕生提供了堅(jiān)實(shí)的基礎(chǔ)。 如來(lái)自:百科
- 基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法 更多內(nèi)容
-
如何關(guān)閉已申請(qǐng)的 圖像識(shí)別 服務(wù)? 服務(wù)開通后,已申請(qǐng)的服務(wù)可在圖像識(shí)別服務(wù)控制臺(tái)的“服務(wù)列表”頁(yè)面內(nèi)查看,如果不想再使用本服務(wù),無(wú)需手動(dòng)關(guān)閉,不調(diào)用即可。 在未購(gòu)買圖像識(shí)別服務(wù)套餐包的情況下,調(diào)用服務(wù)將以按需計(jì)費(fèi)的方式計(jì)費(fèi)。 幫助文檔 快速入門 幫助入門使用者快速的掌握?qǐng)D像識(shí)別服務(wù)使用流程來(lái)自:專題
數(shù)據(jù)集,又稱為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語(yǔ)音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測(cè)、音頻分割、文本分類等來(lái)自:百科
注冊(cè)昵稱審核 對(duì)網(wǎng)站的用戶注冊(cè)信息進(jìn)行智能審核,過(guò)濾包含廣告、反動(dòng)、色情等內(nèi)容的用戶昵稱。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:響應(yīng)速度小于0.1秒。 媒資 內(nèi)容審核 自動(dòng)識(shí)別媒資中可能存在的涉政、違禁品等信息,避免已發(fā)布的文章存在違規(guī)風(fēng)險(xiǎn)。來(lái)自:百科
基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 處理速度快 基于大規(guī)模GPU集群,快速識(shí)別敏感信息 網(wǎng)站論壇 不合規(guī)圖片的識(shí)別和處理是用戶原創(chuàng)內(nèi)容(UGC)類網(wǎng)站的重點(diǎn)工作,基于內(nèi)容審核,可以識(shí)別并預(yù)警用戶上傳的不合規(guī)圖片,幫助客戶快速定位處理,降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 處理速度快來(lái)自:百科
驗(yàn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:響應(yīng)速度小于0.1秒。 注冊(cè)昵稱審核 對(duì)網(wǎng)站的用戶注冊(cè)信息進(jìn)行智能審核,過(guò)濾包含廣告、反動(dòng)、色情等內(nèi)容的用戶昵稱。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:響應(yīng)速度小于0來(lái)自:百科
好用戶體驗(yàn) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 快速迭代 持續(xù)快速的迭代文本詞庫(kù),及時(shí)識(shí)別新型不合規(guī)內(nèi)容 注冊(cè)昵稱審核 對(duì)網(wǎng)站的用戶注冊(cè)信息進(jìn)行智能審核,過(guò)濾包含廣告、反動(dòng)、涉黃等內(nèi)容的用戶昵稱 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 海量詞庫(kù) 內(nèi)置海量詞庫(kù),支持各種匹配規(guī)則來(lái)自:百科
視頻內(nèi)容分析:提供多維度的視頻分析算法,支持對(duì)視頻中人、車、物、行為的多目標(biāo)檢測(cè)、識(shí)別、分析等能力,在多種場(chǎng)景下準(zhǔn)確高效地輸出視頻結(jié)構(gòu)化信息,為用戶構(gòu)建強(qiáng)大、全面、便捷的視頻內(nèi)容分析能力。 課程簡(jiǎn)介 本課程主要內(nèi)容包括視頻內(nèi)容分析、 視頻編輯 技術(shù)的及功能特性。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),了解視頻來(lái)自:百科
15:42:21 視頻標(biāo)簽 (簡(jiǎn)稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類、人物識(shí)別、 語(yǔ)音識(shí)別 、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR來(lái)自:百科
- 【技術(shù)分享】基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法發(fā)展(一)
- 基于深度學(xué)習(xí)的目標(biāo)檢測(cè)(Deep Learning-based Object Detection)
- 基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)
- 基于深度學(xué)習(xí)的路面裂縫檢測(cè)算法matlab仿真
- 基于FasterRCNN深度學(xué)習(xí)網(wǎng)絡(luò)的車輛檢測(cè)算法matlab仿真
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)目標(biāo)檢測(cè)教程第3篇:目標(biāo)檢測(cè)算法原理,3.3 SPPNet【附代碼文檔】
- OpenCV中的深度學(xué)習(xí)目標(biāo)檢測(cè)
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于Mask-RCNN深度學(xué)習(xí)網(wǎng)絡(luò)的人員檢測(cè)算法matlab仿真
- 基于Fast-RCNN深度學(xué)習(xí)網(wǎng)絡(luò)的交通標(biāo)志檢測(cè)算法matlab仿真