- 基于高效深度學(xué)習(xí)模型的車(chē)型識(shí)別 內(nèi)容精選 換一換
-
進(jìn)行學(xué)習(xí)。對(duì)于不成功的圖片,我們進(jìn)一步使用 OCR 。OCR能夠識(shí)別出圖像中的文字內(nèi)容及其位置。結(jié)合第一階段的目標(biāo)識(shí)別模型進(jìn)行結(jié)果融合,可以得到更為精確的可點(diǎn)擊區(qū)域結(jié)果,并且這個(gè)時(shí)候的融合方案已經(jīng)初步可以使用了。隨著數(shù)據(jù)集的積累,目標(biāo)檢測(cè)模型的檢測(cè)結(jié)果也變得更精確。最終能夠只使用目標(biāo)識(shí)別方案。來(lái)自:百科服務(wù)能力 描述設(shè)備具備的業(yè)務(wù)能力。將設(shè)備業(yè)務(wù)能力拆分成若干個(gè)服務(wù)后,再定義每個(gè)服務(wù)具備的屬性、命令以及命令的參數(shù)。 以水表為例,水表具有多種能力,如上報(bào)水流、告警、電量、連接等各種數(shù)據(jù),并且能夠接受服務(wù)器下發(fā)的各種命令。產(chǎn)品模型文件在描述水表的能力時(shí),可以將水表的能力劃分五個(gè)服務(wù),每來(lái)自:百科
- 基于高效深度學(xué)習(xí)模型的車(chē)型識(shí)別 相關(guān)內(nèi)容
-
要介紹數(shù)據(jù)庫(kù)設(shè)計(jì)的方法基礎(chǔ)及相關(guān)概念。??????????????????????????????????????????????????????????????????????????????????????????????????????????? 立即學(xué)習(xí) 最新文章 替換V來(lái)自:百科15:46:18 繁多的AI工具安裝配置、數(shù)據(jù)準(zhǔn)備、模型訓(xùn)練慢等是困擾AI工程師的諸多難題。為解決這個(gè)難題,將一站式的 AI開(kāi)發(fā)平臺(tái) (ModelArts)提供給開(kāi)發(fā)者,從數(shù)據(jù)準(zhǔn)備到算法開(kāi)發(fā)、模型訓(xùn)練,最后把模型部署起來(lái),集成到生產(chǎn)環(huán)境。一站式完成所有任務(wù)。ModelArts的功能總覽如下圖所示。來(lái)自:百科
- 基于高效深度學(xué)習(xí)模型的車(chē)型識(shí)別 更多內(nèi)容
-
減少老客戶(hù)的流失、優(yōu)化活動(dòng)效果、提高客戶(hù)響應(yīng)率等等。不同的項(xiàng)目對(duì)數(shù)據(jù)的要求,使用的分析手段也是不一樣的。 2.準(zhǔn)備數(shù)據(jù) 數(shù)據(jù)準(zhǔn)備主要是指收集和預(yù)處理數(shù)據(jù)的過(guò)程。 按照確定的分析目的,有目的性的收集、整合相關(guān)數(shù)據(jù),數(shù)據(jù)準(zhǔn)備是AI開(kāi)發(fā)的一個(gè)基礎(chǔ)。此時(shí)最重要的是保證獲取數(shù)據(jù)的真實(shí)可靠性來(lái)自:百科注冊(cè)昵稱(chēng)審核 對(duì)網(wǎng)站的用戶(hù)注冊(cè)信息進(jìn)行智能審核,過(guò)濾包含廣告、反動(dòng)、色情等內(nèi)容的用戶(hù)昵稱(chēng)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:響應(yīng)速度小于0.1秒。 媒資 內(nèi)容審核 自動(dòng)識(shí)別媒資中可能存在的涉政、違禁品等信息,避免已發(fā)布的文章存在違規(guī)風(fēng)險(xiǎn)。來(lái)自:百科單據(jù)和報(bào)表的電子化,恢復(fù)結(jié)構(gòu)化信息。 提取表格內(nèi)的文字和所在行列位置信息,適應(yīng)不同格式的表格。同時(shí)也識(shí)別表格外部的文字區(qū)域。用于各種單據(jù)和報(bào)表的電子化,恢復(fù)結(jié)構(gòu)化信息。 網(wǎng)絡(luò)圖片識(shí)別 自動(dòng)識(shí)別網(wǎng)絡(luò)圖片內(nèi)的所有文字及其對(duì)應(yīng)位置信息,并能根據(jù)識(shí)別出來(lái)的結(jié)果進(jìn)行聯(lián)系人信息的提取,同時(shí)可供進(jìn)一步的數(shù)據(jù)挖掘后處理操作。來(lái)自:專(zhuān)題應(yīng)用。兼?zhèn)渫晟?span style='color:#C7000B'>的開(kāi)放和接入能力,整合企業(yè)通訊錄、權(quán)限與留存系統(tǒng);通過(guò)開(kāi)源BPMN引擎深度改寫(xiě)與定制,具備承載億級(jí)別數(shù)據(jù)的高性能與良好的功能擴(kuò)展性。充分利用AI技術(shù),在理解、處理信息以及用戶(hù)對(duì)話等方面具有優(yōu)秀的表現(xiàn)。支撐復(fù)雜的對(duì)話流程元數(shù)據(jù)與對(duì)話流程編排;內(nèi)置多個(gè)識(shí)別算法,在少量數(shù)來(lái)自:專(zhuān)題視頻標(biāo)簽 (簡(jiǎn)稱(chēng)VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類(lèi)、人物識(shí)別、語(yǔ)音識(shí)別、文字識(shí)別等多維度分析,形成層次化的分類(lèi)標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻OCR 識(shí)別視頻中出現(xiàn)來(lái)自:百科要專(zhuān)業(yè)的運(yùn)維團(tuán)隊(duì)進(jìn)行管理,不同行業(yè)對(duì)模型的需求差異大,需要針對(duì)特定行業(yè)進(jìn)行模型微調(diào),開(kāi)發(fā)一個(gè)智能化應(yīng)用門(mén)檻還是較高的。 缺少快速定制助手的工具開(kāi)發(fā)平臺(tái) 目前市場(chǎng)上雖然有一些單一環(huán)節(jié)的低代碼開(kāi)發(fā)工具,但缺乏全流程、低門(mén)檻的定制化開(kāi)發(fā)平臺(tái),難以滿足企業(yè)快速開(kāi)發(fā)和迭代的需求。并且缺乏行來(lái)自:百科Compiler)模型轉(zhuǎn)換工具,將其轉(zhuǎn)換成昇騰AI處理器支持的離線模型,模型轉(zhuǎn)換過(guò)程中可以實(shí)現(xiàn)算子調(diào)度的優(yōu)化、權(quán)值數(shù)據(jù)重排、內(nèi)存使用優(yōu)化等,可以脫離設(shè)備完成模型的預(yù)處理。 另外,離線模型轉(zhuǎn)換過(guò)程中,80%左右的問(wèn)題,集中在算子不支持。 1、新網(wǎng)絡(luò),其中算子未開(kāi)發(fā)或發(fā)布; 2、原框架自定義算子,需要在新框架重新適配開(kāi)發(fā);來(lái)自:百科
- 探討場(chǎng)景文本識(shí)別中的語(yǔ)言模型:基于深度學(xué)習(xí)的解決思路
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類(lèi)與識(shí)別
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 開(kāi)源移動(dòng)端車(chē)型識(shí)別
- 基于深度學(xué)習(xí)的海洋魚(yú)類(lèi)識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的鳥(niǎo)類(lèi)識(shí)別系統(tǒng)matlab仿真
- 基于深度學(xué)習(xí)的人類(lèi)活動(dòng)識(shí)別模型研究:HAR-DeepConvLG的設(shè)計(jì)與應(yīng)用
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 基于深度學(xué)習(xí)的端到端通信系統(tǒng)模型