- pytorch深度學(xué)習(xí)實(shí)戰(zhàn) 內(nèi)容精選 換一換
-
手寫數(shù)字識(shí)別模型。 課程目標(biāo) 通過本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 深度學(xué)習(xí)平臺(tái)介紹 第3節(jié) 深度學(xué)習(xí)入門示例介紹 第4節(jié) 神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型 第5節(jié) 華為云深度學(xué)習(xí)平臺(tái)實(shí)操演練 華為云 面向未來的智能世界,來自:百科來自:百科
- pytorch深度學(xué)習(xí)實(shí)戰(zhàn) 相關(guān)內(nèi)容
-
AI平臺(tái)ModelArts AI平臺(tái)ModelArts ModelArts 是面向開發(fā)者的一站式 AI 平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及交互式智能標(biāo)注、大規(guī)模分布式訓(xùn)練、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期 AI 工作流。來自:專題來自:百科
- pytorch深度學(xué)習(xí)實(shí)戰(zhàn) 更多內(nèi)容
-
算能力,可以使用P1型云服務(wù)器。常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 RedShift for Autodesk 3dsMax、V-Ray for 3ds Max Agisoft PhotoScan MapD 彈性云服務(wù)器來自:百科
云知識(shí) 實(shí)戰(zhàn)篇:刷臉時(shí)代已經(jīng)到來,你準(zhǔn)備好了嗎? 實(shí)戰(zhàn)篇:刷臉時(shí)代已經(jīng)到來,你準(zhǔn)備好了嗎? 時(shí)間:2020-12-14 16:36:37 手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。來自:百科
Mesh等熱門技術(shù),帶你深度了解微服務(wù)多種治理、應(yīng)用能力。 課程簡介 本課程主要內(nèi)容包括:微服務(wù)基礎(chǔ)知識(shí),華為云微服務(wù)引擎 CS E框架、開發(fā)、治理等多種應(yīng)用能力,微服務(wù)應(yīng)用實(shí)戰(zhàn)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、系統(tǒng)、完整的了解熱門微服務(wù)技術(shù)理論; 2、學(xué)習(xí)華為云微服務(wù)架構(gòu)和應(yīng)用能力特點(diǎn);來自:百科
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) | PyTorch 環(huán)境搭建
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 計(jì)算機(jī)視覺
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 預(yù)測工資——線性回歸
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 神經(jīng)網(wǎng)絡(luò)的優(yōu)化難題
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 遷移學(xué)習(xí)與自然語言處理實(shí)踐
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 自然語言處理與強(qiáng)化學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2.2 PyTorch