- spark sql 例子 內(nèi)容精選 換一換
-
云數(shù)據(jù)庫(kù) GaussDB NoSQL的應(yīng)用 云數(shù)據(jù)庫(kù) GaussDB NoSQL的應(yīng)用 時(shí)間:2020-09-08 11:03:07 云數(shù)據(jù)庫(kù)GaussDB NoSQL(GaussDB NoSQL,簡(jiǎn)稱NoSQL)是一款基于計(jì)算存儲(chǔ)分離架構(gòu)的分布式多模NoSQL數(shù)據(jù)庫(kù)服務(wù)。在 云計(jì)算平臺(tái)來(lái)自:百科I服務(wù)的基礎(chǔ),用戶執(zhí)行的SQL作業(yè)和Spark作業(yè)都需要使用計(jì)算資源。 存儲(chǔ)資源 存儲(chǔ)資源是 DLI 服務(wù)內(nèi)部存儲(chǔ)的資源,用于存儲(chǔ)數(shù)據(jù)庫(kù)和DLI表,是向DLI導(dǎo)入數(shù)據(jù)的必備條件,體現(xiàn)用戶數(shù)據(jù)存儲(chǔ)在DLI中的數(shù)據(jù)量。 SQL作業(yè) 在SQL作業(yè)編輯器執(zhí)行的SQL語(yǔ)句、導(dǎo)入數(shù)據(jù)和導(dǎo)出數(shù)據(jù)等來(lái)自:百科
- spark sql 例子 相關(guān)內(nèi)容
-
和權(quán)限。 4、手動(dòng)配置HDFS目錄存儲(chǔ)策略,配置動(dòng)態(tài)存儲(chǔ)策略等操作。 Hive 1、編輯、執(zhí)行SQL/HQL語(yǔ)句;保存、復(fù)制、編輯SQL/HQL模板;解釋SQL/HQL語(yǔ)句;保存SQL/HQL語(yǔ)句并進(jìn)行查詢。 2、數(shù)據(jù)庫(kù)展示,數(shù)據(jù)表展示。 3、支持多種Hadoop存儲(chǔ)。 4、通過(guò)來(lái)自:專題華為云計(jì)算 云知識(shí) SQL進(jìn)階 SQL進(jìn)階 時(shí)間:2020-12-14 17:40:48 HCIP-GaussDB-OLAP V1.5系列課程。本課程主要介紹華為 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù)GaussDB(DWS)的高級(jí)語(yǔ)法知識(shí),包括基本的 數(shù)據(jù)類型、常用的函數(shù)、操作符和查詢語(yǔ)句,用戶自定義函數(shù)和存儲(chǔ)過(guò)程;以來(lái)自:百科
- spark sql 例子 更多內(nèi)容
-
流生態(tài)系統(tǒng)基于Flink和Spark雙引擎,完全兼容Flink/Storm/Spark開(kāi)源社區(qū)版本接口,并且在此基礎(chǔ)上做了特性增強(qiáng)和性能提升,為用戶提供易用、低時(shí)延、高吞吐的 實(shí)時(shí)流計(jì)算服務(wù) 。 實(shí)時(shí)流計(jì)算服務(wù)的生態(tài)分為云服務(wù)生態(tài)和開(kāi)源生態(tài): 云服務(wù)生態(tài) CS 服務(wù)在Stream SQL中支持與其他來(lái)自:百科
華為云計(jì)算 云知識(shí) 實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 時(shí)間:2020-11-25 15:19:18 本視頻主要為您介紹實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果的操作教程指導(dǎo)。 場(chǎng)景描述:來(lái)自:百科
隨著大數(shù)據(jù)爆炸式的增長(zhǎng),應(yīng)用大規(guī)模數(shù)據(jù)處理系統(tǒng)分析大數(shù)據(jù)變得越來(lái)越重要。其中,Spark是當(dāng)今應(yīng)用最為廣泛通用的大數(shù)據(jù)先進(jìn)技術(shù)之一。BoostKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn);來(lái)自:百科
提供地理專業(yè)算子:支持全棧Spark能力,具備豐富的Spark空間數(shù)據(jù)分析算法算子,全面支持結(jié)構(gòu)化的遙感影像數(shù)據(jù)、非結(jié)構(gòu)化的三維建模、激光點(diǎn)云等巨量數(shù)據(jù)的離線批處理,支持帶有位置屬性的動(dòng)態(tài)流數(shù)據(jù)實(shí)時(shí)計(jì)算處理。 CEP SQL:提供地理位置分析函數(shù)對(duì)地理空間數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,用戶僅需編寫SQL便可實(shí)現(xiàn)例如偏航檢測(cè),電子圍欄等地理分析場(chǎng)景。來(lái)自:百科
重明”:讓數(shù)據(jù)成為企業(yè)核心生產(chǎn)力 創(chuàng)建 DDS 只讀節(jié)點(diǎn),輕松應(yīng)對(duì)業(yè)務(wù)高峰 【云小課】如何初步定位GaussDB(for openGauss)慢SQL 【云小課】如何查看和優(yōu)化慢SQL 【云小課】MySQL數(shù)據(jù)庫(kù)如何實(shí)現(xiàn)存儲(chǔ)空間自動(dòng)擴(kuò)容來(lái)自:百科