- spark java使用指南 內(nèi)容精選 換一換
-
算框架,擴(kuò)展了Spark處理大規(guī)模流式數(shù)據(jù)的能力。當(dāng)前Spark支持兩種數(shù)據(jù)處理方式:Direct Streaming和Receiver方式。 SparkSQL和DataSet SparkSQL是Spark中用于結(jié)構(gòu)化數(shù)據(jù)處理的模塊。在Spark應(yīng)用中,可以無縫地使用SQL語句亦或是DataSet來自:專題
- spark java使用指南 相關(guān)內(nèi)容
-
Spark SQL作業(yè)的特點(diǎn)與功能 Spark SQL作業(yè)的特點(diǎn)與功能 數(shù)據(jù)湖探索 DLI是完全兼容Apache Spark,也支持標(biāo)準(zhǔn)的Spark SQL作業(yè), DLI 在開源Spark基礎(chǔ)上進(jìn)行了大量的性能優(yōu)化與服務(wù)化改造,不僅兼容Apache Spark生態(tài)和接口,性能較開源提升了2來自:專題華為云計(jì)算 云知識(shí) 基于Spark實(shí)現(xiàn)車主駕駛行為分析 基于Spark實(shí)現(xiàn)車主駕駛行為分析 時(shí)間:2020-12-02 11:15:56 本實(shí)驗(yàn)通過 MRS 服務(wù)Spark組件分析統(tǒng)計(jì)指定時(shí)間內(nèi),車主急加速、急剎車、空擋滑行、超速、疲勞駕駛等違法行為的次數(shù)。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 1.來自:百科
- spark java使用指南 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 華為云MapReduce執(zhí)行Spark SQL語句 華為云MapReduce執(zhí)行Spark SQL語句 時(shí)間:2020-11-24 15:57:34 本視頻主要為您介紹華為云MapReduce執(zhí)行Spark SQL語句的操作教程指導(dǎo)。 場(chǎng)景描述: MapReduce服務(wù) (MapReduce來自:百科云數(shù)據(jù)庫 GaussDB提供對(duì)ODBC3.5的支持。應(yīng)用程序通過 GaussDB 驅(qū)動(dòng)連接數(shù)據(jù)庫。 使用JDBC連接 GaussDB數(shù)據(jù)庫 JDBC是一種用于執(zhí)行SQL語句的Java API,可以為多種關(guān)系數(shù)據(jù)庫提供統(tǒng)一訪問接口,云數(shù)據(jù)庫GaussDB提供了對(duì)JDBC 4.0特性的支持。 使用Psycopg連接云數(shù)據(jù)庫GaussDB來自:專題pacedJob 相關(guān)推薦 Spark應(yīng)用開發(fā)簡(jiǎn)介:Spark開發(fā)接口簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Spark開發(fā)接口簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Flink開發(fā)接口簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Flink開發(fā)接口簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Spark開發(fā)接口簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Spark開發(fā)接口簡(jiǎn)介 如何命名商標(biāo)名稱?來自:百科華為云計(jì)算 云知識(shí) 實(shí)時(shí)流計(jì)算服務(wù) 創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 時(shí)間:2020-11-25 15:19:18 本視頻主要為您介紹實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果的操作教程指導(dǎo)。 場(chǎng)景描述:來自:百科隨著大數(shù)據(jù)爆炸式的增長(zhǎng),應(yīng)用大規(guī)模數(shù)據(jù)處理系統(tǒng)分析大數(shù)據(jù)變得越來越重要。其中,Spark是當(dāng)今應(yīng)用最為廣泛通用的大數(shù)據(jù)先進(jìn)技術(shù)之一。BoostKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn);來自:百科
- java.time包使用指南初步了解
- 【Spark】如何在Spark Scala/Java應(yīng)用中調(diào)用Python腳本
- Spark案例:Java版統(tǒng)計(jì)單詞個(gè)數(shù)
- 以java API方式提交spark作業(yè)
- 在 Java 中實(shí)現(xiàn)異步編程:CompletableFuture 使用指南
- 在 Java 中實(shí)現(xiàn)異步編程:CompletableFuture 使用指南!
- Java 8 Time Api 使用指南-珍藏限量版
- AOP 使用指南
- Ollydbg使用指南
- 寫一個(gè)spark的java程序