- 神經(jīng)網(wǎng)絡(luò)算法 內(nèi)容精選 換一換
-
類場景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過程需要處理海量的數(shù)據(jù),推理過程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢,可針對不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海來自:百科華為好望商城丨算法商與集成商,跨產(chǎn)業(yè)鏈天塹的親密握手 華為好望商城丨算法商與集成商,跨產(chǎn)業(yè)鏈天塹的親密握手 時(shí)間:2021-02-19 11:40:22 云計(jì)算 對于算法提供商來說,算法工程化是一大難題。Huawei HoloSens Store的隱性價(jià)值則是從更深層次的算法開發(fā)賦能算法提供商。來自:云商店
- 神經(jīng)網(wǎng)絡(luò)算法 相關(guān)內(nèi)容
-
AI挑戰(zhàn)賽圍繞生活中的街景圖像展開,選手可以通過深度學(xué)習(xí)算法進(jìn)行圖像語義分割,對圖像進(jìn)行像素級別的分類。 【賽事背景】 近年來,以AI技術(shù)為核心的各項(xiàng)應(yīng)用經(jīng)過多年的快速發(fā)展,人工智能已經(jīng)融入到人們的生活當(dāng)中。隨著產(chǎn)業(yè)需求和政策導(dǎo)向需要,各公司在AI技術(shù)方面的投資持續(xù)增長,計(jì)算機(jī)視覺已經(jīng)成為了相關(guān)算法占比最大,研發(fā)投入來自:百科類場景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過程需要處理海量的數(shù)據(jù),推理過程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢,可針對不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中來自:百科
- 神經(jīng)網(wǎng)絡(luò)算法 更多內(nèi)容
-
DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來自:百科
算引擎由開發(fā)者進(jìn)行自定義來完成所需要的具體功能。 通過流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來源。來自:百科
RASR優(yōu)勢 識別準(zhǔn)確率高 采用最新一代 語音識別 技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡稱DNN)技術(shù),大大提高了抗噪性能,使識別準(zhǔn)確率顯著提升。 識別速度快 把語言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識別速度在業(yè)內(nèi)處于領(lǐng)先地位。來自:百科
銀行卡 OCR 識別-銀行卡識別相比于其它類似產(chǎn)品有哪些優(yōu)勢? 銀行卡OCR識別相比于其他類似產(chǎn)品具有以下優(yōu)勢:1. 先進(jìn)的算法模型:銀行卡OCR識別采用了先進(jìn)的算法模型,使得識別準(zhǔn)確率高達(dá)99%以上。這意味著在識別銀行卡信息時(shí),幾乎沒有錯(cuò)誤或誤判的情況發(fā)生。2. 豐富的識別字段:銀行來自:專題
部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開發(fā),通過該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過程和方法。 基本要求: 1. 對業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來自:百科
華為云提供一站式人工智能開發(fā)平臺,通過對歷史氣象數(shù)據(jù)的高效訓(xùn)練不斷優(yōu)化推理模型,助力短時(shí)間臨近預(yù)報(bào)更加精準(zhǔn) 優(yōu)勢 算法豐富:提供圖像分類、物體檢測等幾十種CNN/RNN神經(jīng)網(wǎng)絡(luò)算法模型;提供大量基于開源數(shù)據(jù)集訓(xùn)練好的模型,加速模型訓(xùn)練 使用便捷:無縫對接華為云的 OBS 存儲(chǔ)和GPU高性能計(jì)算,滿足各類業(yè)務(wù)場景需求來自:百科
本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺對預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來自:百科
- 神經(jīng)網(wǎng)絡(luò)算法研究和分析
- BP神經(jīng)網(wǎng)絡(luò)(算法整體思路及原理+手寫公式推導(dǎo))
- DL之ANN/DNN: 人工神經(jīng)網(wǎng)絡(luò)ANN/DNN深度神經(jīng)網(wǎng)絡(luò)算法的簡介、應(yīng)用、經(jīng)典案例之詳細(xì)攻略
- 神經(jīng)網(wǎng)絡(luò)算法在局域網(wǎng)管理軟件中的實(shí)用性和并發(fā)性
- 如何利用BP神經(jīng)網(wǎng)絡(luò)算法實(shí)現(xiàn)對內(nèi)網(wǎng)管理軟件中的預(yù)測與管理
- DL:神經(jīng)網(wǎng)絡(luò)算法簡介之Affine 層的簡介、使用方法、代碼實(shí)現(xiàn)之詳細(xì)攻略
- DL之DNN優(yōu)化技術(shù):神經(jīng)網(wǎng)絡(luò)算法簡介之GD/SGD算法的簡介、代碼實(shí)現(xiàn)、代碼調(diào)參之詳細(xì)攻略
- DL之CNN:卷積神經(jīng)網(wǎng)絡(luò)算法應(yīng)用之卷積神經(jīng)網(wǎng)絡(luò)實(shí)踐技巧(DA/DP/WI/BN/H/O/R)、優(yōu)化技術(shù)經(jīng)驗(yàn)之詳細(xì)攻略
- DL之DNN之BP:神經(jīng)網(wǎng)絡(luò)算法簡介之BP算法/GD算法之不需要額外任何文字,只需要八張圖講清楚BP類神經(jīng)網(wǎng)絡(luò)的工作原理
- DL:神經(jīng)網(wǎng)絡(luò)算法簡介之耗算力的簡介、原因、經(jīng)典模型耗算力計(jì)算、GPU使用之詳細(xì)攻略