- 數(shù)據(jù)分析范例 內(nèi)容精選 換一換
-
華為云計算 云知識 探索Serverless 數(shù)據(jù)湖 :無需大數(shù)據(jù)背景,會SQL就會大數(shù)據(jù)分析 探索Serverless數(shù)據(jù)湖:無需大數(shù)據(jù)背景,會SQL就會大數(shù)據(jù)分析 時間:2021-04-27 15:04:16 內(nèi)容簡介: 隨著大數(shù)據(jù)&AI技術(shù)在企業(yè)商用場景的廣泛應(yīng)用,統(tǒng)一數(shù)據(jù)平臺來自:百科基礎(chǔ)的公有云大數(shù)據(jù)服務(wù)較難充分滿足物聯(lián)網(wǎng)數(shù)據(jù)分析的要求原因何在? 基礎(chǔ)的公有云大數(shù)據(jù)服務(wù)較難充分滿足物聯(lián)網(wǎng)數(shù)據(jù)分析的要求原因何在? 時間:2021-03-12 14:54:55 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計算 基礎(chǔ)的公有云大數(shù)據(jù)服務(wù)較難充分滿足物聯(lián)網(wǎng)數(shù)據(jù)分析的要求原因包含: 1. 缺乏最佳實(shí)踐,學(xué)習(xí)成本/開發(fā)門檻高;來自:百科
- 數(shù)據(jù)分析范例 相關(guān)內(nèi)容
-
完成當(dāng)天的活動監(jiān)管,以此保證整場活動的順利進(jìn)行。 石墨提供的活動 OP(執(zhí)行手冊)提供了活動當(dāng)天從現(xiàn)場分工到物料選擇 15 大項的具體填寫范例?;顒赢?dāng)天,活動方可以將活動當(dāng)天最新信息,打印出來,方便現(xiàn)場執(zhí)行人隨時查看。 終于,一場3000人市場活動的任務(wù)順利完成!兩個月內(nèi)策劃,三來自:云商店各行各業(yè)優(yōu)秀企業(yè)是如何應(yīng)用UDESK Insight BI數(shù)據(jù)分析(H CS 版)的?一起來看看具體的場景。 提升客服行業(yè)的數(shù)據(jù)分析效率 提供實(shí)時的數(shù)據(jù)分析報告 助力企業(yè)高效決策的數(shù)據(jù)大屏 提升客服行業(yè)的數(shù)據(jù)分析效率 這款UDESK Insight BI數(shù)據(jù)分析(HCS版)產(chǎn)品具備強(qiáng)大的數(shù)據(jù)整合、清洗來自:專題
- 數(shù)據(jù)分析范例 更多內(nèi)容
-
增強(qiáng)分析型敏捷BI平臺 自助化數(shù)據(jù)分析 商品具有數(shù)據(jù)分析自助化的特點(diǎn),能夠自動識別數(shù)據(jù)的潛在關(guān)系。這使得用戶無需專業(yè)的數(shù)據(jù)分析技能,就能輕松進(jìn)行數(shù)據(jù)分析,提高了數(shù)據(jù)利用的便利性。 商品具有數(shù)據(jù)分析自助化的特點(diǎn),能夠自動識別數(shù)據(jù)的潛在關(guān)系。這使得用戶無需專業(yè)的數(shù)據(jù)分析技能,就能輕松進(jìn)行數(shù)據(jù)分析,提高了數(shù)據(jù)利用的便利性。來自:專題據(jù)權(quán)限控制到表/列,幫助企業(yè)實(shí)現(xiàn)部門間數(shù)據(jù)共享和權(quán)限管理。 建議搭配以下服務(wù)使用 OBS 、DIS、DAYU 圖3運(yùn)營商大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)具有大數(shù)據(jù)的相關(guān)特征,數(shù)據(jù)體量巨大,例如,全球衛(wèi)星遙感影像數(shù)據(jù)量達(dá)到PB級。數(shù)據(jù)種類多,有結(jié)構(gòu)化的遙感影像柵來自:百科物聯(lián)網(wǎng)資產(chǎn)模型感知,提升物聯(lián)網(wǎng)數(shù)據(jù)分析能力 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)是以物聯(lián)網(wǎng)資產(chǎn)模型為中心,與資產(chǎn)模型深度整合,在數(shù)據(jù)分析作業(yè)的定義中,開發(fā)者可以方便引用物聯(lián)網(wǎng)的模型數(shù)據(jù),提升物聯(lián)網(wǎng)數(shù)據(jù)分析能力。 開放架構(gòu),擁抱生態(tài) 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)整合了大數(shù)據(jù)分析領(lǐng)域的最佳實(shí)踐,為開發(fā)者打造來自:百科一站式BI解決方案 企業(yè)積累的海量數(shù)據(jù)及各種數(shù)據(jù)資產(chǎn),體量龐大,需高性能大數(shù)據(jù)平臺支撐進(jìn)行全量數(shù)據(jù)分析和挖掘。依托DWS+BI工具打造全局的、直觀的、關(guān)聯(lián)性的、可視化的運(yùn)營數(shù)字化分析平臺 ,以數(shù)據(jù)分析來驅(qū)動業(yè)務(wù)價值提升及管理提升。 優(yōu)勢 多源數(shù)據(jù)接入:多源數(shù)據(jù)采集,打破數(shù)據(jù)孤島,形成統(tǒng)一的數(shù)據(jù)展現(xiàn)平臺。來自:專題DFS中進(jìn)行批量分析,在1小時內(nèi) MRS 可以完成10T的天氣數(shù)據(jù)分析。 圖1環(huán)保行業(yè)海量數(shù)據(jù)分析場景 該場景下MRS的優(yōu)勢如下所示。 低成本:利用OBS實(shí)現(xiàn)低成本存儲。 海量數(shù)據(jù)分析:利用Hive實(shí)現(xiàn)TB/PB級的數(shù)據(jù)分析。 可視化的導(dǎo)入導(dǎo)出工具:通過可視化導(dǎo)入導(dǎo)出工具Loader,將數(shù)據(jù)導(dǎo)出到DWS,完成BI分析。來自:百科業(yè)務(wù)數(shù)據(jù)流實(shí)時整合,及時對經(jīng)營決策進(jìn)行優(yōu)化與調(diào)整。 圖3增強(qiáng)型ETL+實(shí)時BI分析 實(shí)時數(shù)據(jù)分析 移動互聯(lián)網(wǎng)、IoT場景下會產(chǎn)生大量實(shí)時數(shù)據(jù),為了快速獲取數(shù)據(jù)價值,需要對數(shù)據(jù)進(jìn)行實(shí)時分析,DWS的快速入庫和查詢能力可支持實(shí)時數(shù)據(jù)分析。 圖4實(shí)時數(shù)據(jù)分析 優(yōu)勢 流式數(shù)據(jù)實(shí)時入庫 IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過流計算及AI服務(wù)處理后,可實(shí)時寫入DWS。來自:百科