- 圖像分類數(shù)據(jù)集 內(nèi)容精選 換一換
-
華為云計算 云知識 什么是數(shù)據(jù)集 什么是數(shù)據(jù)集 時間:2021-04-02 15:07:19 數(shù)據(jù)集,又稱為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理來自:百科一鍵智能標(biāo)注,怎么用? 在ModelArts管理控制臺,選擇“數(shù)據(jù)管理>數(shù)據(jù)集”。 創(chuàng)建一個數(shù)據(jù)集,數(shù)據(jù)集類型需選擇“圖像分類”或“物體檢測”類型。 單擊數(shù)據(jù)集名稱,進(jìn)入數(shù)據(jù)集概覽頁。然后,單擊右上角“開始標(biāo)注”,進(jìn)入數(shù)據(jù)集詳情頁。 在數(shù)據(jù)集詳情頁,單擊“待確認(rèn)”頁簽,然后單擊“啟動智能標(biāo)注”。來自:百科
- 圖像分類數(shù)據(jù)集 相關(guān)內(nèi)容
-
數(shù)據(jù)管理中如何將兩個數(shù)據(jù)集合并? 目前不支持直接合并。 但是可以參考如下操作方式,將兩個數(shù)據(jù)集的數(shù)據(jù)合并在一個數(shù)據(jù)集中。 例如需將數(shù)據(jù)集A和數(shù)據(jù)集B進(jìn)行合并。 1.分別將數(shù)據(jù)集A和數(shù)據(jù)集B進(jìn)行發(fā)布。 2.發(fā)布后可獲得數(shù)據(jù)集A和數(shù)據(jù)集B的Manifest文件。可通過數(shù)據(jù)集的“數(shù)據(jù)集輸出位置”獲得此文件。來自:專題云知識 使用ModelArts實(shí)現(xiàn)花卉圖像分類 使用ModelArts實(shí)現(xiàn)花卉圖像分類 時間:2020-12-02 11:24:42 本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺使用flowers數(shù)據(jù)集對預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建花卉圖像分類應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 使用戶掌來自:百科
- 圖像分類數(shù)據(jù)集 更多內(nèi)容
-
本課程基于華為云ModelArts一站式 AI開發(fā)平臺 ,主要內(nèi)容包括基礎(chǔ)知識、經(jīng)典數(shù)據(jù)集和經(jīng)典算法的介紹,每章課程都是實(shí)戰(zhàn)案例,模型訓(xùn)練、測試、評估全流程覆蓋,配合代碼講解和課后作業(yè),幫助您掌握八大熱門AI領(lǐng)域的模型開發(fā)能力。 課程簡介 本課程主要內(nèi)容包括圖像分類、物體檢測、圖像分割、 人臉識別 、 OCR 、視頻分析、來自:百科華為云計算 云知識 使用ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成 使用ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成 時間:2020-12-01 14:55:02 實(shí)驗(yàn)指導(dǎo)用戶短時間內(nèi)熟悉并利用云服務(wù)快速實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)的集成。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 熟悉華為云VPC/E CS /RD來自:百科華為云計算 云知識 使用昇騰AI 彈性云服務(wù)器 實(shí)現(xiàn)圖像分類應(yīng)用 使用昇騰AI彈性云服務(wù)器實(shí)現(xiàn)圖像分類應(yīng)用 時間:2020-12-01 15:59:46 實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰彈性云服務(wù)器的圖像分類應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 1.了解華為昇騰全棧開發(fā)工具M(jìn)ind Studio;來自:百科RDS|DRS|ECS|VPC|VPN|EIP 使用ModelArts實(shí)現(xiàn)花卉圖像分類 本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺使用flowers數(shù)據(jù)集對預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建花卉圖像分類應(yīng)用 OBS |ModelArts 微認(rèn)證 網(wǎng)站消費(fèi)者行為分析 大數(shù)據(jù)時代背景下,來自:專題到生產(chǎn)環(huán)境。一站式完成所有任務(wù)。 ModelArts特色功能如下所示: 1、 數(shù)據(jù)治理 支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 2、極“快”致“簡”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 3、多場景部署來自:專題云數(shù)據(jù)遷移 CDM 怎么使用 云數(shù)據(jù)遷移 CDM怎么使用 當(dāng)您在使用云數(shù)據(jù)遷移(CDM)過程中遇到任何困難,可在文檔中心獲取相關(guān)產(chǎn)品及服務(wù)的幫助文檔。文檔中心為您提供 華為云產(chǎn)品 使用指導(dǎo),讓您輕松上云。 當(dāng)您在使用云數(shù)據(jù)遷移(CDM)過程中遇到任何困難,可在文檔中心獲取相關(guān)產(chǎn)品及服務(wù)來自:專題云數(shù)據(jù)遷移 CDM 免費(fèi)試用 云數(shù)據(jù)遷移(Cloud Data Migration, 簡稱CDM),是一種高效、易用的數(shù)據(jù)集成服務(wù)。 CDM圍繞大數(shù)據(jù)遷移上云和 智能數(shù)據(jù)湖 解決方案,提供了簡單易用的遷移能力和多種數(shù)據(jù)源到 數(shù)據(jù)湖 的集成能力,降低了客戶數(shù)據(jù)源遷移和集成的復(fù)雜性,有效的提高您數(shù)據(jù)遷移和集成的效率。來自:專題一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動的研究領(lǐng)域,需要基于大量的歷史數(shù)據(jù)對模型進(jìn)行訓(xùn)練,再使用模型對新的數(shù)據(jù)進(jìn)行推理和預(yù)測,因此數(shù)據(jù)是機(jī)器學(xué)習(xí)中的關(guān)鍵要素之一。 MNIST數(shù)據(jù)集是目前手寫數(shù)字識別領(lǐng)域使用最為廣泛的公開數(shù)據(jù)集,大部分識別算來自:百科
- 嘗試創(chuàng)建”圖像分類“數(shù)據(jù)集
- 書籍“ModelArts人工智能應(yīng)用開發(fā)指南”?人工智能應(yīng)用快速開發(fā)基于圖像分類模板的開發(fā)學(xué)習(xí)分享
- 使用深度學(xué)習(xí)進(jìn)行圖像分類的簡介
- Dataset之JFT:JFT/FastEval14k數(shù)據(jù)集的簡介、下載、案例應(yīng)用之詳細(xì)攻略
- 【圖像分類】YOLOv5-6.2全新版本:支持圖像分類
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.2 CIFAR-10數(shù)據(jù)集
- 實(shí)戰(zhàn)圖像分類模型
- 嘗試創(chuàng)建”圖像分割“數(shù)據(jù)集
- 【ModelArts入門指南】手把手教你在ModelArts進(jìn)行圖像標(biāo)注