- 什么叫模型訓(xùn)練 內(nèi)容精選 換一換
-
現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴方面所開(kāi)展的一些研究工作。 課程簡(jiǎn)介 本課程介紹了在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴方面所開(kāi)展的一些研究工作。來(lái)自:百科還有機(jī)會(huì)獲得 華為云職業(yè)認(rèn)證 證書 訓(xùn)練營(yíng)結(jié)營(yíng)后可直接參與HCIP-Cloud Service DevOps Engineer職業(yè)認(rèn)證,通過(guò)后即頒發(fā)證書 三、訓(xùn)練營(yíng)參與流程 報(bào)名學(xué)習(xí)課程——觀看開(kāi)班直播——進(jìn)入學(xué)習(xí)交流群、每日打卡學(xué)習(xí)——參加訓(xùn)練營(yíng)結(jié)營(yíng)賽——論壇發(fā)帖互動(dòng) 四、豐富的訓(xùn)練營(yíng)獎(jiǎng)品,等你拿!來(lái)自:百科
- 什么叫模型訓(xùn)練 相關(guān)內(nèi)容
-
ModelArts模型訓(xùn)練_模型訓(xùn)練簡(jiǎn)介_(kāi)如何訓(xùn)練模型 ModelArts推理部署_模型_AI應(yīng)用來(lái)源-華為云 ModelArts推理部署_ OBS 導(dǎo)入_模型包規(guī)范-華為云 什么是跨源連接- 數(shù)據(jù)湖探索 DLI跨源連接 什么是 數(shù)據(jù)湖 探索服務(wù)_數(shù)據(jù)湖探索 DLI 用途與特點(diǎn) 什么是Spark SQL作業(yè)_數(shù)據(jù)湖探索DLISpark來(lái)自:專題華為云計(jì)算 云知識(shí) 鯤鵬高校訓(xùn)練營(yíng)-深圳大學(xué)&鯤鵬聯(lián)合出品 鯤鵬高校訓(xùn)練營(yíng)-深圳大學(xué)&鯤鵬聯(lián)合出品 時(shí)間:2021-04-27 15:56:27 內(nèi)容簡(jiǎn)介: 算力已成為驅(qū)動(dòng)社會(huì)經(jīng)濟(jì)發(fā)展的新生產(chǎn)力,多業(yè)務(wù)場(chǎng)景、多種數(shù)據(jù)結(jié)構(gòu),帶來(lái)多樣性算力的需求。鯤鵬產(chǎn)業(yè)構(gòu)筑了從最基礎(chǔ)的處理器、硬件來(lái)自:百科
- 什么叫模型訓(xùn)練 更多內(nèi)容
-
本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來(lái)自:百科華為云計(jì)算 云知識(shí) 推理模型的遷移與調(diào)優(yōu) 推理模型的遷移與調(diào)優(yōu) 時(shí)間:2020-12-08 10:39:19 本課程主要介紹如何將第三方框架訓(xùn)練出來(lái)的模型轉(zhuǎn)換成昇騰專用模型,并進(jìn)行調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開(kāi)發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀+實(shí)戰(zhàn)演示,使學(xué)員學(xué)會(huì)使用模型轉(zhuǎn)換工具遷移所需要的預(yù)訓(xùn)練模型。來(lái)自:百科升產(chǎn)品質(zhì)量。 優(yōu)勢(shì): ●高效:云端已訓(xùn)練的視覺(jué)模型,在邊緣側(cè)部署,實(shí)現(xiàn)產(chǎn)品實(shí)時(shí)預(yù)測(cè),提升檢測(cè)效率,提高產(chǎn)品質(zhì)量 ●模型優(yōu):提供邊云協(xié)同架構(gòu),云端模型訓(xùn)練,數(shù)據(jù)邊緣處理,模型增量訓(xùn)練優(yōu)化,實(shí)現(xiàn)模型性能優(yōu)異 ●統(tǒng)一管控:智能邊緣平臺(tái)可以實(shí)現(xiàn)統(tǒng)一模型下發(fā),節(jié)點(diǎn)狀態(tài)統(tǒng)一監(jiān)控 圖1 工業(yè)視覺(jué)場(chǎng)景來(lái)自:專題量算法表現(xiàn)的一個(gè)基準(zhǔn)任務(wù)。所以,通過(guò)這一實(shí)踐場(chǎng)景來(lái)了解神經(jīng)網(wǎng)絡(luò)開(kāi)發(fā)和訓(xùn)練,可謂再好不過(guò)了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開(kāi)發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來(lái)一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)來(lái)自:百科用常規(guī)的方式訓(xùn)練模型一個(gè)算法耗時(shí)長(zhǎng),準(zhǔn)確率低。我們依托于預(yù)訓(xùn)練大模型、小樣本學(xué)習(xí)等技術(shù),可以對(duì)這種數(shù)據(jù)量小的城市問(wèn)題進(jìn)行模型訓(xùn)練學(xué)習(xí)。同時(shí)通過(guò)圖像生成等數(shù)據(jù)增強(qiáng)技術(shù),可以實(shí)現(xiàn)把白天的圖像遷移成晚上,晴天的圖像遷移成雨霧等,這樣不僅提高了數(shù)據(jù)量?jī)?chǔ)備,而且還可以讓算法模型的準(zhǔn)確率提升來(lái)自:百科控制臺(tái)自助服務(wù),一站式快速生成所需內(nèi)容 用戶申請(qǐng)賬號(hào)并上傳相關(guān)授權(quán),拍攝訓(xùn)練所需音視頻素材,上傳進(jìn)行模型訓(xùn)練,生成自定義形象和聲音。選擇背景、聲音、模特等內(nèi)容,基于文本或語(yǔ)音智能驅(qū)動(dòng),實(shí)現(xiàn)視頻制作、 視頻直播 、智能交互等能力。 華為云盤古數(shù)字人大模型,賦能千行百業(yè)數(shù)字化營(yíng)銷新模式 MetaStudio來(lái)自:專題