- 深度學(xué)習(xí)數(shù)據(jù)訓(xùn)練意義 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)數(shù)據(jù)訓(xùn)練意義 相關(guān)內(nèi)容
-
本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出作為下一層的輸入,層層連接構(gòu)成深度神經(jīng)網(wǎng)絡(luò)。來(lái)自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科
- 深度學(xué)習(xí)數(shù)據(jù)訓(xùn)練意義 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
為了解決真實(shí)世界中的問(wèn)題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。來(lái)自:百科
并實(shí)現(xiàn)售賣機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開(kāi)發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 目標(biāo)學(xué)員 希望了解AI與IoT技術(shù)結(jié)合場(chǎng)景實(shí)現(xiàn)方法并掌握其開(kāi)發(fā)能力的人員。 課程目標(biāo) 通過(guò)學(xué)習(xí)本課程,學(xué)員可以對(duì)設(shè)備接入IoT平臺(tái)上報(bào)數(shù)據(jù),基于AI對(duì)設(shè)備上報(bào)數(shù)據(jù)進(jìn)行分析預(yù)測(cè)的實(shí)際應(yīng)用場(chǎng)景有一個(gè)了解。來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析的意義 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析的意義 時(shí)間:2021-06-02 09:49:24 數(shù)據(jù)庫(kù) 需求分析階段主要是收集信息并進(jìn)行分析和整理,為后續(xù)階段提供充足信息。 需求分析是整個(gè)數(shù)據(jù)庫(kù)設(shè)計(jì)的基礎(chǔ)。是最困難,也可能最耗時(shí)的階段。需求分析沒(méi)做好,會(huì)導(dǎo)致整個(gè)數(shù)據(jù)庫(kù)設(shè)計(jì)重新返工。來(lái)自:百科
ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專題
華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來(lái)的方向,云數(shù)據(jù)庫(kù)是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理,數(shù)據(jù)庫(kù)遷移和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷移方案和來(lái)自:百科
數(shù)據(jù)庫(kù)登錄入口_華為 GaussDB 分布式數(shù)據(jù)庫(kù)免費(fèi)領(lǐng)取 MySQL云數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)免費(fèi)嗎_MySQL數(shù)據(jù)庫(kù) 免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)入門(mén) 免費(fèi)云數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)有哪些 云數(shù)據(jù)庫(kù)和普通數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù)服務(wù)器_免費(fèi)數(shù)據(jù)庫(kù)有哪些來(lái)自:專題
性能管理的意義有哪些 性能管理的意義有哪些 時(shí)間:2021-07-01 15:46:01 數(shù)據(jù)庫(kù)管理 數(shù)據(jù)庫(kù) 應(yīng)用性能管理 性能管理的意義主要為資源的高效使用、偵測(cè)系統(tǒng)問(wèn)題和容量規(guī)劃幾個(gè)方面。 1.資源的高效使用 數(shù)據(jù)庫(kù)實(shí)際上總是在有限的環(huán)境下運(yùn)行。 對(duì)資源的有效管理確保數(shù)據(jù)庫(kù)系統(tǒng)在高峰時(shí)期能夠滿足用戶對(duì)系統(tǒng)的性能要求。來(lái)自:百科
數(shù)據(jù)庫(kù)登錄入口_華為GaussDB分布式數(shù)據(jù)庫(kù)免費(fèi)領(lǐng)取 MySQL云數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)免費(fèi)嗎_MySQL數(shù)據(jù)庫(kù) 免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)入門(mén) 免費(fèi)云數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)有哪些 云數(shù)據(jù)庫(kù)和普通數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù)服務(wù)器_免費(fèi)數(shù)據(jù)庫(kù)有哪些來(lái)自:專題
Turbo高性能,加速訓(xùn)練過(guò)程 1、訓(xùn)練數(shù)據(jù)集高速讀取,避免GPU/NPU因存儲(chǔ)I/O等待產(chǎn)生空閑,提升GPU/NPU利用率。 2、大模型TB級(jí)Checkpoint文件秒級(jí)保存和加載,減少訓(xùn)練任務(wù)中斷時(shí)間。 3 數(shù)據(jù)導(dǎo)入導(dǎo)出異步化,不占用訓(xùn)練任務(wù)時(shí)長(zhǎng),無(wú)需部署外部遷移工具 1、訓(xùn)練任務(wù)開(kāi)始前將數(shù)據(jù)從 OBS 導(dǎo)入到SFS來(lái)自:專題
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- ATCS 一個(gè)用于訓(xùn)練深度學(xué)習(xí)模型的數(shù)據(jù)集
- tensorflow學(xué)習(xí):準(zhǔn)備訓(xùn)練數(shù)據(jù)和構(gòu)建訓(xùn)練模型
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 訓(xùn)練集、驗(yàn)證集、測(cè)試集的作用和意義