- 大數(shù)據(jù)和人工智能學(xué)習(xí) 內(nèi)容精選 換一換
-
云知識(shí) 數(shù)據(jù)庫需求分析的步驟和要求 數(shù)據(jù)庫需求分析的步驟和要求 時(shí)間:2021-06-02 09:54:57 數(shù)據(jù)庫 在做數(shù)據(jù)庫設(shè)計(jì)的需求分析時(shí),在系統(tǒng)調(diào)研、收集和分析需求,確定系統(tǒng)開發(fā)范圍的階段,要求: 1. 信息調(diào)研 信息調(diào)研目標(biāo)是明確所設(shè)計(jì)的數(shù)據(jù)庫中要存儲(chǔ)哪些數(shù)據(jù),哪些數(shù)據(jù)來自:百科CBR應(yīng)用場景 - 數(shù)據(jù)備份和恢復(fù) CBR應(yīng)用場景 - 數(shù)據(jù)備份和恢復(fù) 時(shí)間:2021-07-02 11:06:20 云備份針對(duì)服務(wù)器/文件系統(tǒng)提供備份保護(hù)服務(wù),最大限度保障用戶數(shù)據(jù)的安全性和正確性,確保業(yè)務(wù)安全。云備份適用于數(shù)據(jù)備份和恢復(fù)。 云備份在受黑客攻擊或病毒入侵、數(shù)據(jù)被誤刪、應(yīng)用來自:百科
- 大數(shù)據(jù)和人工智能學(xué)習(xí) 相關(guān)內(nèi)容
-
云知識(shí) MRS 如何保證數(shù)據(jù)和業(yè)務(wù)運(yùn)行安全 MRS如何保證數(shù)據(jù)和業(yè)務(wù)運(yùn)行安全 時(shí)間:2020-09-24 09:52:34 MRS作為一個(gè)海量數(shù)據(jù)管理和分析平臺(tái),具備高安全性。主要從以下幾個(gè)方面保障數(shù)據(jù)和業(yè)務(wù)運(yùn)行安全: 網(wǎng)絡(luò)隔離 整個(gè)公有云網(wǎng)絡(luò)劃分為2個(gè)平面,即業(yè)務(wù)平面和管理平面。兩個(gè)平來自:百科云知識(shí) 典型的企業(yè)OLTP和OLAP數(shù)據(jù)庫 典型的企業(yè)OLTP和OLAP數(shù)據(jù)庫 時(shí)間:2021-06-16 16:31:01 數(shù)據(jù)庫 聯(lián)機(jī)事務(wù)處理(OLTP):存儲(chǔ)/查詢業(yè)務(wù)應(yīng)用中活動(dòng)的數(shù)據(jù)以支撐日常的業(yè)務(wù)活動(dòng); 聯(lián)機(jī)分析處理(OLAP):存儲(chǔ)歷史數(shù)據(jù)以支撐復(fù)雜的分析操作,側(cè)重決策支持。來自:百科
- 大數(shù)據(jù)和人工智能學(xué)習(xí) 更多內(nèi)容
-
開展這種互動(dòng)的學(xué)習(xí)活動(dòng)。 -學(xué)習(xí)內(nèi)容免下載,免安裝,隨時(shí)學(xué)習(xí)。 -支持多個(gè)平臺(tái),學(xué)校家庭無縫切換。 -基于大數(shù)據(jù)統(tǒng)計(jì)分析,開展針對(duì)性的學(xué)習(xí),有效提升成績。 教育行業(yè)解決方案 人工智能、大數(shù)據(jù)、 區(qū)塊鏈 等技術(shù)迅猛發(fā)展,正在改變?nèi)瞬判枨蠛徒逃螒B(tài)。華為云通過云計(jì)算、大數(shù)據(jù)、物聯(lián)網(wǎng)、人工來自:百科
。 在線學(xué)習(xí) 基于應(yīng)用服務(wù)網(wǎng)格的灰度發(fā)布 微認(rèn)證 在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各個(gè)系統(tǒng)需要頻繁地進(jìn)行改造升級(jí),通過灰度發(fā)布可以實(shí)現(xiàn)系統(tǒng)的在線發(fā)布和無損回退,降低系統(tǒng)發(fā)布風(fēng)險(xiǎn)。 在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各個(gè)系統(tǒng)需要頻繁地進(jìn)行改造升級(jí),通過灰度發(fā)布可以實(shí)現(xiàn)系統(tǒng)的在線發(fā)布和無損回退,降低系統(tǒng)發(fā)布風(fēng)險(xiǎn)。來自:專題
在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各個(gè)系統(tǒng)需要頻繁地進(jìn)行改造升級(jí),通過灰度發(fā)布可以實(shí)現(xiàn)系統(tǒng)的在線發(fā)布和無損回退,降低系統(tǒng)發(fā)布風(fēng)險(xiǎn)。 在互聯(lián)網(wǎng)的快速發(fā)展大背景下,各個(gè)系統(tǒng)需要頻繁地進(jìn)行改造升級(jí),通過灰度發(fā)布可以實(shí)現(xiàn)系統(tǒng)的在線發(fā)布和無損回退,降低系統(tǒng)發(fā)布風(fēng)險(xiǎn)。 在線學(xué)習(xí) 基于華為云CodeArts的托馬斯商城來自:專題
云知識(shí) 關(guān)系型數(shù)據(jù)庫和非關(guān)系模型數(shù)據(jù)庫的區(qū)別 關(guān)系型數(shù)據(jù)庫和非關(guān)系模型數(shù)據(jù)庫的區(qū)別 時(shí)間:2020-07-28 14:11:44 數(shù)據(jù)庫 關(guān)系型數(shù)據(jù)庫與非關(guān)系型數(shù)據(jù)庫的區(qū)別 1.不同的數(shù)據(jù)存儲(chǔ)方法。 關(guān)系數(shù)據(jù)庫和非關(guān)系數(shù)據(jù)庫之間的主要區(qū)別在于數(shù)據(jù)的存儲(chǔ)方式。關(guān)系數(shù)據(jù)自然采用表格格來自:百科
云備份使用標(biāo)簽管理服務(wù)對(duì)存儲(chǔ)庫添加預(yù)置標(biāo)簽,對(duì)存儲(chǔ)庫進(jìn)行過濾和管理。 標(biāo)簽管理服務(wù)(Tag Management Service,TMS) 管理存儲(chǔ)庫標(biāo)簽 云備份依賴于 消息通知 服務(wù)發(fā)送使用云備份的消息通知給用戶。配置消息通知后,當(dāng)備份任務(wù)執(zhí)行失敗時(shí),系統(tǒng)將以郵件和短信的形式進(jìn)行通知用戶。 消息通知服務(wù)(Simple來自:專題
群中只有一臺(tái)物理機(jī),并且將主機(jī)和備機(jī)劃分在同一可用區(qū)內(nèi),將會(huì)導(dǎo)致主備實(shí)例創(chuàng)建失敗。 云數(shù)據(jù)庫RDS服務(wù)支持在同一個(gè)可用區(qū)內(nèi)或者跨可用區(qū)部署數(shù)據(jù)庫主備實(shí)例,備機(jī)的選擇和主機(jī)可用區(qū)對(duì)應(yīng)情況: 相同(默認(rèn)),主機(jī)和備機(jī)會(huì)部署在同一個(gè)可用區(qū)。 不同,主機(jī)和備機(jī)會(huì)部署在不同的可用區(qū),以提供來自:專題
量、安全、高可靠、低成本的數(shù)據(jù)存儲(chǔ)能力。MRS可以直接處理 OBS 中的數(shù)據(jù),客戶可以基于云管理平臺(tái)Web界面和OBS客戶端對(duì)數(shù)據(jù)進(jìn)行瀏覽、管理和使用,同時(shí)可以通過REST API接口方式單獨(dú)或集成到業(yè)務(wù)程序進(jìn)行管理和訪問數(shù)據(jù)。 數(shù)據(jù)存儲(chǔ)在OBS:數(shù)據(jù)存儲(chǔ)和計(jì)算分離,集群存儲(chǔ)成本低,來自:百科
環(huán)境理解:基于幾何理解和語義理解等AI技術(shù),對(duì)物理世界進(jìn)行感知和認(rèn)知。 2.數(shù)據(jù)可視:將虛擬坐標(biāo)與現(xiàn)實(shí)世界坐標(biāo)對(duì)齊,把業(yè)務(wù)相關(guān)的3D模型、視頻、 圖文信息、表單等內(nèi)容信息實(shí)時(shí)、準(zhǔn)確地疊加在真實(shí)物體之上。 3.遠(yuǎn)程協(xié)作:與AR眼鏡等終端結(jié)合,全面采集和復(fù)原端場景,實(shí)現(xiàn)“現(xiàn)場”和“遠(yuǎn)程”雙向沉浸式溝通。來自:云商店
- 《數(shù)據(jù)科學(xué)與分析:Python語言實(shí)現(xiàn)》 —3.2 人工智能和機(jī)器學(xué)習(xí)
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.1.3 人工智能三大主義
- 人工智能深度學(xué)習(xí)
- “ModelArts人工智能應(yīng)用開發(fā)指南” 人工智能應(yīng)用開發(fā)數(shù)據(jù)準(zhǔn)備學(xué)習(xí)分享
- 一表知人工智能與機(jī)器學(xué)習(xí)和深度學(xué)習(xí)區(qū)別
- 大前端學(xué)習(xí) -- 虛擬 DOM 和 Diff 算法 學(xué)習(xí)筆記
- 漫畫:如何學(xué)習(xí)人工智能?
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.1.2 弱人工智能、強(qiáng)人工智能與超人工智能
- 大數(shù)據(jù)學(xué)習(xí)的五大步驟
- 從零開始學(xué)習(xí)Python人工智能:神經(jīng)網(wǎng)絡(luò)和機(jī)器學(xué)習(xí)入門指南