- mapreduce etl 內(nèi)容精選 換一換
-
場(chǎng)景,根據(jù)上層業(yè)務(wù)建設(shè)多樣性數(shù)倉(cāng)集市。湖倉(cāng)一體避免了煙囪式割裂建設(shè)導(dǎo)致的效率問(wèn)題,進(jìn)一步降低多技術(shù)平臺(tái)導(dǎo)致的運(yùn)維復(fù)雜度,降低了跨湖倉(cāng)來(lái)回ETL的時(shí)延。 華為云Stack FusionInsight MRS 云原生 數(shù)據(jù)湖 讓數(shù)據(jù)走上“高速”路 華為在湖倉(cāng)一體早有布局,在2020年華為全來(lái)自:百科統(tǒng)有成本高,周期長(zhǎng),難運(yùn)維和不靈活等問(wèn)題。 針對(duì)上述問(wèn)題,華為云提供了大數(shù)據(jù) MapReduce服務(wù) (MRS),MRS是一個(gè)在華為云上部署和管理Hadoop系統(tǒng)的服務(wù),一鍵即可部署Hadoop集群。MRS提供租戶完全可控的一站式企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),完全兼容開(kāi)源接口,結(jié)合華為云計(jì)來(lái)自:百科
- mapreduce etl 相關(guān)內(nèi)容
-
來(lái)自:百科景,根據(jù)上層業(yè)務(wù)建設(shè)多樣性數(shù)倉(cāng)集市。 湖倉(cāng)一體避免了煙囪式割裂建設(shè)導(dǎo)致的效率問(wèn)題,進(jìn)一步降低多技術(shù)平臺(tái)導(dǎo)致的運(yùn)維復(fù)雜度,降低了跨湖倉(cāng)來(lái)回ETL的時(shí)延。 云技術(shù)、開(kāi)源社區(qū)和開(kāi)放技術(shù)模式,促使大數(shù)據(jù)飛速發(fā)展 ▎頭部云廠商引領(lǐng)大數(shù)據(jù)技術(shù)發(fā)展 根據(jù)《IDC大數(shù)據(jù)平臺(tái)市場(chǎng)報(bào)告,2021H1來(lái)自:百科
- mapreduce etl 更多內(nèi)容
-
使用前必讀:使用場(chǎng)景說(shuō)明 方案概述:應(yīng)用場(chǎng)景 應(yīng)用場(chǎng)景:大數(shù)據(jù)ETL處理 什么是B1、SoH、BWoH?它們之間區(qū)別是什么? 方案概述:應(yīng)用場(chǎng)景 方案概述:需求場(chǎng)景 方案概述:應(yīng)用場(chǎng)景 DLI 適用哪些場(chǎng)景:大數(shù)據(jù)ETL處理 方案概述:應(yīng)用場(chǎng)景 入門(mén)簡(jiǎn)介:場(chǎng)景三:使用應(yīng)用平臺(tái)進(jìn)行應(yīng)用運(yùn)營(yíng)來(lái)自:云商店
多個(gè)節(jié)點(diǎn)上,數(shù)據(jù)分析任務(wù)被推送到數(shù)據(jù)所在位置就近執(zhí)行,并行地完成大規(guī)模的數(shù)據(jù)處理工作,實(shí)現(xiàn)對(duì)數(shù)據(jù)處理的快速響應(yīng)。 應(yīng)用層:數(shù)據(jù)加載工具、ETL(Extract-Transform-Load)工具、以及商業(yè)智能BI工具、數(shù)據(jù)挖掘和分析工具,均可以通過(guò)標(biāo)準(zhǔn)接口與 GaussDB (DWS來(lái)自:百科
場(chǎng)景特點(diǎn):面向流數(shù)據(jù),支持Window、CEP、Join等復(fù)雜的流分析操作,毫秒級(jí)時(shí)延。 適用場(chǎng)景:實(shí)時(shí) 日志分析 ,網(wǎng)絡(luò)流量監(jiān)控,實(shí)時(shí)風(fēng)險(xiǎn)管控,實(shí)時(shí)數(shù)據(jù)統(tǒng)計(jì),實(shí)時(shí)數(shù)據(jù)ETL。 圖1實(shí)時(shí)流分析場(chǎng)景 物聯(lián)網(wǎng)IoT場(chǎng)景 物聯(lián)網(wǎng)設(shè)備或邊緣設(shè)備,上傳數(shù)據(jù)到 數(shù)據(jù)接入服務(wù) (DIS)或者其他云存儲(chǔ)服務(wù), 實(shí)時(shí)流計(jì)算服務(wù) 直接從D來(lái)自:百科
Loader通過(guò)MapReduce作業(yè)實(shí)現(xiàn)并行的導(dǎo)入或者導(dǎo)出作業(yè)任務(wù),不同類(lèi)型的導(dǎo)入導(dǎo)出作業(yè)可能只包含Map階段或者同時(shí)Map和Reduce階段。 Loader同時(shí)利用MapReduce實(shí)現(xiàn)容錯(cuò),在作業(yè)任務(wù)執(zhí)行失敗時(shí),可以重新調(diào)度。 數(shù)據(jù)導(dǎo)入到HBase 在MapReduce作業(yè)的Map階段中從外部數(shù)據(jù)源抽取數(shù)據(jù)。來(lái)自:百科
據(jù)標(biāo)注等多種工具服務(wù),幫助用戶提升數(shù)據(jù)處理效率 優(yōu)勢(shì) 網(wǎng)絡(luò) 數(shù)據(jù)治理 高效,數(shù)據(jù)易理解使用 設(shè)備采集數(shù)據(jù)接口標(biāo)準(zhǔn)化,支持多種主流文件的導(dǎo)入和ETL處理,數(shù)據(jù)清洗/轉(zhuǎn)換的治理過(guò)程全自動(dòng)化;數(shù)據(jù)屬性易理解,集成10000+屬性的數(shù)據(jù)字典,降低用戶使用網(wǎng)絡(luò)數(shù)據(jù)門(mén)檻 安全技術(shù)覆蓋數(shù)據(jù)全生命周期,保證數(shù)據(jù)入湖安全來(lái)自:百科
掘出數(shù)據(jù)背后的商業(yè)情報(bào)供決策者參考。這里的數(shù)據(jù)發(fā)掘主要指涉及多張表的大范圍的數(shù)據(jù)聚合和關(guān)聯(lián)的復(fù)雜查詢。 使用 數(shù)據(jù)倉(cāng)庫(kù) ,通過(guò)某個(gè)數(shù)據(jù)轉(zhuǎn)換(ETL)的過(guò)程,業(yè)務(wù)運(yùn)營(yíng)數(shù)據(jù)庫(kù)的數(shù)據(jù)可以被拷貝到數(shù)據(jù)倉(cāng)庫(kù)中供分析計(jì)算使用。同時(shí)支持把多個(gè)業(yè)務(wù)運(yùn)營(yíng)系統(tǒng)的數(shù)據(jù)匯集到一個(gè)數(shù)據(jù)倉(cāng)庫(kù)中。這樣數(shù)據(jù)可以被更好地關(guān)聯(lián)和分析,從而產(chǎn)生更大的價(jià)值。來(lái)自:百科
- MapReduce快速入門(mén)系列(14) | MapReduce之計(jì)數(shù)器應(yīng)用及簡(jiǎn)單的數(shù)據(jù)清洗(ETL)
- 什么是ETL--ETL定義、過(guò)程和工具選型思路
- 數(shù)據(jù)ETL是指什么
- 大數(shù)據(jù)ETL詳解
- 你真的了解ELT和ETL嗎?
- 談?wù)凟TL中的數(shù)據(jù)質(zhì)量
- MapReduce 教程 – MapReduce 基礎(chǔ)知識(shí)和 MapReduce 示例
- ETL為什么經(jīng)常變成ELT甚至LET?
- MapReduce快速入門(mén)系列(15) | MapReduce之?dāng)?shù)據(jù)清洗進(jìn)階版本
- Hive項(xiàng)目實(shí)戰(zhàn)系列(1) | 項(xiàng)目創(chuàng)建與上傳數(shù)據(jù)
- MapReduce服務(wù)
- MapReduce服務(wù)定價(jià)
- MapReduce服務(wù)入門(mén)
- MapReduce服務(wù)學(xué)習(xí)與資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 華為云數(shù)據(jù)湖探索服務(wù) DLI
- Flexus企業(yè)搜索服務(wù)
- 云搜索服務(wù)
- 對(duì)象存儲(chǔ)服務(wù) OBS功能-BigData Pro
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具