- mapreduce 聚合 內(nèi)容精選 換一換
-
快速擴(kuò)展,非常適合IoT的高并發(fā)寫入的場景。 文檔數(shù)據(jù)庫服務(wù) 提供二級索引功能滿足動態(tài)查詢的需求,利用兼容MongoDB的map-reduce聚合框架進(jìn)行多維度的數(shù)據(jù)分析。優(yōu)勢:1.寫性能: 文檔數(shù)據(jù)庫 的高性能寫入,基于分片構(gòu)建的集群支持物聯(lián)網(wǎng)TB級的數(shù)據(jù)需求;2.高性能和擴(kuò)展性:對高來自:百科大數(shù)據(jù)分析是什么_使用MapReduce_創(chuàng)建 MRS 服務(wù) MapReduce工作原理_MapReduce是什么意思_MapReduce流程 MapReduce服務(wù)_如何使用MapReduce服務(wù)_MRS集群客戶端安裝與使用 MapReduce服務(wù)_什么是MapReduce服務(wù)_什么是HBase來自:專題
- mapreduce 聚合 相關(guān)內(nèi)容
-
壓縮比例:某些物聯(lián)網(wǎng)設(shè)備可能產(chǎn)生巨量數(shù)據(jù),最大限度的壓縮是減少成本的直接手段。 查詢效率:面對長時間積累的物聯(lián)網(wǎng)數(shù)據(jù),如何滿足高性能查詢,特別是經(jīng)常做時間維度的聚合查詢。 按數(shù)據(jù)時效性分層處理,獲得綜合處理效率最大化 高效的數(shù)據(jù)清洗,為數(shù)據(jù)分析輸入高質(zhì)量的數(shù)據(jù) 相比將設(shè)備數(shù)據(jù)轉(zhuǎn)發(fā)至通用數(shù)據(jù)分析服務(wù)進(jìn)行來自:百科大數(shù)據(jù)分析是什么_使用MapReduce_創(chuàng)建MRS服務(wù) MapReduce工作原理_MapReduce是什么意思_MapReduce流程 MapReduce服務(wù)_如何使用MapReduce服務(wù)_MRS集群客戶端安裝與使用 MapReduce服務(wù)_什么是MapReduce服務(wù)_什么是HBase來自:專題
- mapreduce 聚合 更多內(nèi)容
-
指標(biāo)數(shù)據(jù)分為原始指標(biāo)數(shù)據(jù)和聚合指標(biāo)數(shù)據(jù)。 原始指標(biāo)數(shù)據(jù)是指原始采樣指標(biāo)數(shù)據(jù),原始指標(biāo)數(shù)據(jù)一般保留2天。 聚合指標(biāo)數(shù)據(jù)是指將原始指標(biāo)數(shù)據(jù)經(jīng)過聚合處理后的指標(biāo)數(shù)據(jù),聚合指標(biāo)數(shù)據(jù)保留時間根據(jù)聚合周期不同而不同,具體如下: 聚合周期為5分鐘的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留10天; 聚合周期為20分鐘的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留20天;來自:百科
云監(jiān)控 服務(wù)支持的聚合方法有哪些? 云監(jiān)控服務(wù)支持的聚合方法有以下五種: 平均值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的平均值。 最大值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的最大值。 最小值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的最小值。 求和值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的求和值。 方差 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的方差。 說明:聚合運(yùn)算的過程是將來自:專題
插值,缺失的數(shù)據(jù)點(diǎn),支持線性插值數(shù)據(jù)補(bǔ)全。 降精度,支持預(yù)降精度和實(shí)時降精度計算,滿足高效查詢需求。 空間聚合,支持按照不同的Tag進(jìn)行空間聚合和分組計算。 豐富的聚合函數(shù),提供AVG、SUM、MAX、MIN等聚合函數(shù)。 表格存儲服務(wù) CloudTable 表格存儲服務(wù) (CloudTable)是基于Apache來自:百科