- mapreduce 聚合 內(nèi)容精選 換一換
-
快速擴(kuò)展,非常適合IoT的高并發(fā)寫(xiě)入的場(chǎng)景。 文檔數(shù)據(jù)庫(kù)服務(wù) 提供二級(jí)索引功能滿足動(dòng)態(tài)查詢的需求,利用兼容MongoDB的map-reduce聚合框架進(jìn)行多維度的數(shù)據(jù)分析。優(yōu)勢(shì):1.寫(xiě)性能: 文檔數(shù)據(jù)庫(kù) 的高性能寫(xiě)入,基于分片構(gòu)建的集群支持物聯(lián)網(wǎng)TB級(jí)的數(shù)據(jù)需求;2.高性能和擴(kuò)展性:對(duì)高來(lái)自:百科壓縮比例:某些物聯(lián)網(wǎng)設(shè)備可能產(chǎn)生巨量數(shù)據(jù),最大限度的壓縮是減少成本的直接手段。 查詢效率:面對(duì)長(zhǎng)時(shí)間積累的物聯(lián)網(wǎng)數(shù)據(jù),如何滿足高性能查詢,特別是經(jīng)常做時(shí)間維度的聚合查詢。 按數(shù)據(jù)時(shí)效性分層處理,獲得綜合處理效率最大化 高效的數(shù)據(jù)清洗,為數(shù)據(jù)分析輸入高質(zhì)量的數(shù)據(jù) 相比將設(shè)備數(shù)據(jù)轉(zhuǎn)發(fā)至通用數(shù)據(jù)分析服務(wù)進(jìn)行來(lái)自:百科
- mapreduce 聚合 相關(guān)內(nèi)容
-
大數(shù)據(jù)分析是什么_使用MapReduce_創(chuàng)建 MRS 服務(wù) MapReduce工作原理_MapReduce是什么意思_MapReduce流程 MapReduce服務(wù)_如何使用MapReduce服務(wù)_MRS集群客戶端安裝與使用 MapReduce服務(wù)_什么是MapReduce服務(wù)_什么是HBase來(lái)自:專題大數(shù)據(jù)分析是什么_使用MapReduce_創(chuàng)建MRS服務(wù) MapReduce工作原理_MapReduce是什么意思_MapReduce流程 MapReduce服務(wù)_如何使用MapReduce服務(wù)_MRS集群客戶端安裝與使用 MapReduce服務(wù)_什么是MapReduce服務(wù)_什么是HBase來(lái)自:專題
- mapreduce 聚合 更多內(nèi)容
-
,為數(shù)據(jù)分析做好準(zhǔn)備 大數(shù)據(jù)分析:使用大數(shù)據(jù)高可用,可水平擴(kuò)展框架,基于內(nèi)存計(jì)算模型,DAG調(diào)度框架、高效的優(yōu)化器,綜合性能是傳統(tǒng)MapReduce模型的百倍以上,幫助開(kāi)發(fā)者輕松完成物聯(lián)網(wǎng)數(shù)據(jù)批分析 標(biāo)準(zhǔn)SQL作業(yè):提供標(biāo)準(zhǔn)的SQL接口,物聯(lián)網(wǎng)數(shù)據(jù)開(kāi)發(fā)者無(wú)需關(guān)心SQL處理引擎的部來(lái)自:百科指標(biāo)數(shù)據(jù)分為原始指標(biāo)數(shù)據(jù)和聚合指標(biāo)數(shù)據(jù)。 原始指標(biāo)數(shù)據(jù)是指原始采樣指標(biāo)數(shù)據(jù),原始指標(biāo)數(shù)據(jù)一般保留2天。 聚合指標(biāo)數(shù)據(jù)是指將原始指標(biāo)數(shù)據(jù)經(jīng)過(guò)聚合處理后的指標(biāo)數(shù)據(jù),聚合指標(biāo)數(shù)據(jù)保留時(shí)間根據(jù)聚合周期不同而不同,具體如下: 聚合周期為5分鐘的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留10天; 聚合周期為20分鐘的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留20天;來(lái)自:百科云監(jiān)控 服務(wù)支持的聚合方法有哪些? 云監(jiān)控服務(wù)支持的聚合方法有以下五種: 平均值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的平均值。 最大值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的最大值。 最小值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的最小值。 求和值 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的求和值。 方差 聚合周期內(nèi)指標(biāo)數(shù)據(jù)的方差。 說(shuō)明:聚合運(yùn)算的過(guò)程是將來(lái)自:專題Loader通過(guò)MapReduce作業(yè)實(shí)現(xiàn)并行的導(dǎo)入或者導(dǎo)出作業(yè)任務(wù),不同類型的導(dǎo)入導(dǎo)出作業(yè)可能只包含Map階段或者同時(shí)Map和Reduce階段。 Loader同時(shí)利用MapReduce實(shí)現(xiàn)容錯(cuò),在作業(yè)任務(wù)執(zhí)行失敗時(shí),可以重新調(diào)度。 數(shù)據(jù)導(dǎo)入到HBase 在MapReduce作業(yè)的Map階段中從外部數(shù)據(jù)源抽取數(shù)據(jù)。來(lái)自:百科插值,缺失的數(shù)據(jù)點(diǎn),支持線性插值數(shù)據(jù)補(bǔ)全。 降精度,支持預(yù)降精度和實(shí)時(shí)降精度計(jì)算,滿足高效查詢需求。 空間聚合,支持按照不同的Tag進(jìn)行空間聚合和分組計(jì)算。 豐富的聚合函數(shù),提供AVG、SUM、MAX、MIN等聚合函數(shù)。 表格存儲(chǔ)服務(wù) CloudTable 表格存儲(chǔ)服務(wù) (CloudTable)是基于Apache來(lái)自:百科
- collapse 聚合
- MapReduce 教程 – MapReduce 基礎(chǔ)知識(shí)和 MapReduce 示例
- Maven聚合工程
- Elasticsearch聚合學(xué)習(xí)之二:區(qū)間聚合
- SQL聚合函數(shù)
- DDD - 聚合與聚合根_如何理解 Respository與DAO
- 【Hadoop】【Yarn】日志聚合
- MapReduce快速入門(mén)系列(12) | MapReduce之OutputFormat
- MapReduce快速入門(mén)系列(1) | 什么是MapReduce
- MapReduce快速入門(mén)系列(16) | MapReduce開(kāi)發(fā)總結(jié)