- 數(shù)據(jù)挖掘和大數(shù)據(jù) 內(nèi)容精選 換一換
-
環(huán)境理解:基于幾何理解和語(yǔ)義理解等AI技術(shù),對(duì)物理世界進(jìn)行感知和認(rèn)知。 2.數(shù)據(jù)可視:將虛擬坐標(biāo)與現(xiàn)實(shí)世界坐標(biāo)對(duì)齊,把業(yè)務(wù)相關(guān)的3D模型、視頻、 圖文信息、表單等內(nèi)容信息實(shí)時(shí)、準(zhǔn)確地疊加在真實(shí)物體之上。 3.遠(yuǎn)程協(xié)作:與AR眼鏡等終端結(jié)合,全面采集和復(fù)原端場(chǎng)景,實(shí)現(xiàn)“現(xiàn)場(chǎng)”和“遠(yuǎn)程”雙向沉浸式溝通。來(lái)自:云商店hadoop三大組件是什么 hadoop三大組件是什么 時(shí)間:2020-09-21 09:15:14 hadoop三大組件mapreduce分布式運(yùn)算框架yarn任務(wù)調(diào)度平臺(tái)hdfs分布式文件系統(tǒng) 1.HDFS數(shù)據(jù)存放策略:分塊存儲(chǔ)+副本存放。 2.數(shù)據(jù)拓?fù)浣Y(jié)構(gòu)(即數(shù)據(jù)備份):默認(rèn)來(lái)自:百科
- 數(shù)據(jù)挖掘和大數(shù)據(jù) 相關(guān)內(nèi)容
-
載點(diǎn)一致性快照:懸掛多個(gè)掛載點(diǎn)的IO后,再打快照 2.秒級(jí)快照和恢復(fù):快照實(shí)現(xiàn)采用基于索引的ROW(Redirect-On-Write, 寫(xiě)時(shí)重定向)機(jī)制, 創(chuàng)建快照時(shí)刻和通過(guò)快照恢復(fù)都不涉及數(shù)據(jù)復(fù)制 規(guī)格: 一個(gè)卷最多創(chuàng)建128個(gè)快照(公測(cè)中,目前對(duì)外開(kāi)放了7個(gè)); 一個(gè)快照最多創(chuàng)建128個(gè)卷。來(lái)自:百科來(lái)自:百科
- 數(shù)據(jù)挖掘和大數(shù)據(jù) 更多內(nèi)容
-
可視化數(shù)據(jù)大屏開(kāi)發(fā) 可視化數(shù)據(jù)大屏開(kāi)發(fā) 華為云Astro低代碼平臺(tái)提供可視化數(shù)據(jù)大屏開(kāi)發(fā)平臺(tái)Astro Canvas提供了豐富的可視化組件、靈活的數(shù)據(jù)接入和多種方式頁(yè)面構(gòu)建能力,支持多屏適配,幫助開(kāi)發(fā)者快速構(gòu)建和發(fā)布專(zhuān)業(yè)水準(zhǔn)的實(shí)時(shí)可視化數(shù)據(jù)大屏應(yīng)用。 華為云Astro低代碼平臺(tái)提供可視化數(shù)據(jù)大屏開(kāi)發(fā)平臺(tái)Astro來(lái)自:專(zhuān)題GaussDB 數(shù)據(jù)庫(kù)函數(shù)和字符串 GaussDB數(shù)據(jù)庫(kù)函數(shù)和字符串 云數(shù)據(jù)庫(kù)GaussDB是華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù)。具備企業(yè)級(jí)復(fù)雜事務(wù)混合負(fù)載能力,同時(shí)支持分布式事務(wù),同城跨AZ部署,數(shù)據(jù)0丟失,支持1000+節(jié)點(diǎn)的擴(kuò)展能力,PB級(jí)海量存儲(chǔ)。GaussDB數(shù)據(jù)庫(kù)支持哪些函數(shù)和字符串?來(lái)自:專(zhuān)題成本。 產(chǎn)品詳情 立即使用 為什么選擇數(shù)據(jù)庫(kù)和應(yīng)用遷移UGO? 低成本,易操作 數(shù)據(jù)庫(kù)和應(yīng)用遷移UGO引導(dǎo)式的可視化過(guò)程貫穿整個(gè)遷移流程,最大程度降低用戶的數(shù)據(jù)庫(kù)知識(shí)門(mén)檻。數(shù)據(jù)庫(kù)和應(yīng)用遷移UGO使用自動(dòng)化服務(wù)進(jìn)行一鍵數(shù)據(jù)采集和轉(zhuǎn)換,并對(duì)轉(zhuǎn)換失敗的對(duì)象進(jìn)行錯(cuò)誤跟蹤與定位,節(jié)省用戶人力成本。來(lái)自:專(zhuān)題默認(rèn)首頁(yè)是總覽頁(yè)面,顯示了數(shù)據(jù)表的報(bào)警和阻塞情況。 主要包括以下幾部分內(nèi)容: 所選周期內(nèi)的作業(yè)數(shù)、實(shí)例數(shù)、異常表數(shù),以及各種實(shí)例運(yùn)行狀態(tài)的分布和變化趨勢(shì)情況。 當(dāng)天告警分類(lèi)統(tǒng)計(jì)、當(dāng)天數(shù)據(jù)表告警統(tǒng)計(jì)、最近7天規(guī)則告警分類(lèi)趨勢(shì)的統(tǒng)計(jì)和最近7天規(guī)則數(shù)量的趨勢(shì)。 規(guī)則模板 質(zhì)量規(guī)則模板是數(shù)據(jù)質(zhì)量的核心功來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)技術(shù)的發(fā)展趨勢(shì)和華為的數(shù)據(jù)庫(kù)技術(shù)發(fā)展 數(shù)據(jù)庫(kù)技術(shù)的發(fā)展趨勢(shì)和華為的數(shù)據(jù)庫(kù)技術(shù)發(fā)展 時(shí)間:2021-06-16 16:19:09 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)技術(shù)革新正在打破現(xiàn)有秩序,云化,分布式,多模處理是未來(lái)主要趨勢(shì)。 而華為的鯤鵬生態(tài)三個(gè)技術(shù)方向是:芯片/介質(zhì)、操來(lái)自:百科簡(jiǎn)單拖拽、自由組合、預(yù)置豐富的樣式、組件和大屏模板,實(shí)時(shí)預(yù)覽,輕松搭建大屏。業(yè)務(wù)人員和運(yùn)營(yíng)人員也可基于需求快速配置大屏。 簡(jiǎn)單拖拽、自由組合、預(yù)置豐富的樣式、組件和大屏模板,實(shí)時(shí)預(yù)覽,輕松搭建大屏。業(yè)務(wù)人員和運(yùn)營(yíng)人員也可基于需求快速配置大屏。 自定義大屏模板 大屏模板作為資產(chǎn)沉淀,可在項(xiàng)目中快速?gòu)?fù)用。 大屏模板作為資產(chǎn)沉淀,可在項(xiàng)目中快速?gòu)?fù)用。來(lái)自:專(zhuān)題華為云 FusionInsight 智能數(shù)據(jù)湖助力企業(yè)全面演進(jìn)現(xiàn)代數(shù)據(jù)棧,優(yōu)化數(shù)據(jù)服務(wù)和管理 華為云FusionInsight智能數(shù)據(jù)湖助力企業(yè)全面演進(jìn)現(xiàn)代數(shù)據(jù)棧,優(yōu)化數(shù)據(jù)服務(wù)和管理 時(shí)間:2023-11-02 16:50:34 隨著大數(shù)據(jù)技術(shù)的發(fā)展,政企數(shù)字化轉(zhuǎn)型的首要任務(wù)是充分利用大數(shù)據(jù)和分析。然而,在來(lái)自:百科Influx 接口支持數(shù)據(jù)庫(kù)實(shí)例的備份和恢復(fù),以保證數(shù)據(jù)可靠性。 GeminiDB Influx 接口 支持自動(dòng)備份和手動(dòng)備份兩種方式。 時(shí)序數(shù)據(jù)庫(kù)GeminiDB Influx接口相關(guān)文章推薦 云數(shù)據(jù)庫(kù)GeminiDB Influx接口讓智能電網(wǎng)中時(shí)序數(shù)據(jù)處理更高效 云數(shù)據(jù)庫(kù)GeminiDB來(lái)自:專(zhuān)題云知識(shí) 關(guān)系型和非關(guān)系型數(shù)據(jù)庫(kù)的市場(chǎng)分布 關(guān)系型和非關(guān)系型數(shù)據(jù)庫(kù)的市場(chǎng)分布 時(shí)間:2021-06-16 15:56:20 數(shù)據(jù)庫(kù)市場(chǎng)總體分為關(guān)系型、非關(guān)系型。 關(guān)系型數(shù)據(jù)庫(kù)是市場(chǎng)主力,占據(jù)80%以上市場(chǎng)空間。關(guān)系型數(shù)據(jù)庫(kù)又分為企業(yè)生產(chǎn)交易的OLTP數(shù)據(jù)庫(kù)和企業(yè)分析的OLAP數(shù)據(jù)庫(kù)。OLTP和OLAP數(shù)據(jù)庫(kù)市場(chǎng)占比為7:3;來(lái)自:百科華為云計(jì)算 云知識(shí) 云數(shù)據(jù)庫(kù)MySQL支持的實(shí)例類(lèi)型和優(yōu)勢(shì)對(duì)比 云數(shù)據(jù)庫(kù)MySQL支持的實(shí)例類(lèi)型和優(yōu)勢(shì)對(duì)比 時(shí)間:2020-01-03 04:47:16 mysql 目前,云數(shù)據(jù)庫(kù)MySQL支持的實(shí)例分為如下幾個(gè)類(lèi)型,單機(jī)實(shí)例采用單個(gè)數(shù)據(jù)庫(kù)節(jié)點(diǎn)部署架構(gòu)。與主流的主備實(shí)例相比,單機(jī)來(lái)自:百科
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘相關(guān)概念 ) ★★
- 數(shù)據(jù)挖掘十大經(jīng)典算法
- 數(shù)據(jù)挖掘十大算法--Apriori算法
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘簡(jiǎn)介 ( 6 個(gè)常用功能 | 數(shù)據(jù)挖掘結(jié)果判斷 | 數(shù)據(jù)挖掘?qū)W習(xí)框架 | 數(shù)據(jù)挖掘分類(lèi) )
- 數(shù)據(jù)挖掘和可視化
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘特點(diǎn) | 數(shù)據(jù)挖掘組件化思想 | 決策樹(shù)模型 ) ★
- 數(shù)據(jù)挖掘
- 數(shù)據(jù)挖掘領(lǐng)域十大經(jīng)典算法初探
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘簡(jiǎn)介 ( 數(shù)據(jù)挖掘引入 | KDD 流程 | 數(shù)據(jù)源要求 | 技術(shù)特點(diǎn) )
- 數(shù)據(jù)挖掘十大算法--K-均值聚類(lèi)算法