- 工業(yè) 大數(shù)據(jù) 分析軟件 內(nèi)容精選 換一換
-
云知識(shí) 工業(yè)智能體是什么 工業(yè)智能體是什么 時(shí)間:2020-09-22 17:14:12 工業(yè)智能體,依托大數(shù)據(jù)&人工智能,提供設(shè)計(jì)、生產(chǎn)、物流、銷售、服務(wù)全鏈?zhǔn)街悄芊?wù),挖掘數(shù)據(jù)價(jià)值,助力企業(yè)借助新技術(shù),構(gòu)筑領(lǐng)先優(yōu)勢(shì) 能力特性 工藝參數(shù)優(yōu)化 基于制造過(guò)程、環(huán)境、售后數(shù)據(jù),分析問(wèn)題發(fā)生的環(huán)節(jié)和工藝參數(shù)優(yōu)化點(diǎn)、來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典包含什么 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典包含什么 時(shí)間:2021-06-02 10:03:51 數(shù)據(jù)庫(kù) 數(shù)據(jù)字典是對(duì)數(shù)據(jù)的描述,不是數(shù)據(jù)本身。包括: 1. 數(shù)據(jù)項(xiàng) 數(shù)據(jù)項(xiàng)名稱,含義,數(shù)據(jù)類型,長(zhǎng)度,取值范圍,單位,與其他數(shù)據(jù)項(xiàng)邏輯關(guān)系等。 是邏輯設(shè)計(jì)階段模型優(yōu)化的依據(jù)。來(lái)自:百科
- 工業(yè) 大數(shù)據(jù) 分析軟件 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù) 時(shí)間:2021-06-02 09:52:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù),包括: 1. 對(duì)用戶業(yè)務(wù)行為和流程進(jìn)行調(diào)查,了解用戶對(duì)新系統(tǒng)的期望和目標(biāo),了解目前現(xiàn)存系統(tǒng)的主要問(wèn)題; 2. 系統(tǒng)調(diào)研、收集和分析需求,確定系統(tǒng)開(kāi)發(fā)范圍;來(lái)自:百科集設(shè)備/傳感器的測(cè)量數(shù)據(jù),比如溫度傳感器上報(bào)的溫度讀數(shù)虛測(cè)點(diǎn)——基于實(shí)測(cè)點(diǎn)與特定的計(jì)算邏輯計(jì)算而得的指標(biāo) 立即學(xué)習(xí) 最新文章 炎炎夏日都要熱融化了,新冠疫苗又是如何安全高效到達(dá)各地的? IoT邊緣如何實(shí)現(xiàn)海量IoT數(shù)據(jù)就地處理 5G通信關(guān)鍵技術(shù)解讀 5G三大場(chǎng)景的應(yīng)用介紹 5G商用解決方案介紹來(lái)自:百科
- 工業(yè) 大數(shù)據(jù) 分析軟件 更多內(nèi)容
-
connector)來(lái)說(shuō),幾乎感覺(jué)不到任何不同。 免費(fèi)數(shù)據(jù)庫(kù)支持導(dǎo)入哪些數(shù)據(jù)庫(kù)引擎的數(shù)據(jù)? 相同引擎數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出,稱之為同構(gòu)型數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出。 不同引擎數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出,稱之為異構(gòu)型數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出。例如,從Oracle導(dǎo)入數(shù)據(jù)到RDS支持的數(shù)據(jù)庫(kù)引擎。 異構(gòu)型數(shù)據(jù)庫(kù)之間由于格式不同,來(lái)自:專題些設(shè)備,如何對(duì)源源不斷采集到的數(shù)據(jù)進(jìn)行合適的處理等等。而這篇博客我主要想分享下個(gè)人認(rèn)為物聯(lián)網(wǎng)的數(shù)據(jù)分析可能應(yīng)該是什么樣的。 我把物聯(lián)網(wǎng)數(shù)據(jù)的特點(diǎn)和挑戰(zhàn)歸納如下。我覺(jué)得最主要的4個(gè)特點(diǎn)是“大”,“小”,“高”,“低”。 “大”即物聯(lián)網(wǎng)數(shù)據(jù)體量大,我們經(jīng)常聽(tīng)到的一個(gè)經(jīng)典的案例即GE發(fā)來(lái)自:百科、居民生活更便捷。 智能抄表大數(shù)據(jù)分析提升運(yùn)營(yíng)效率應(yīng)用場(chǎng)景 深入洞察表具狀態(tài)和用戶消費(fèi)數(shù)據(jù),實(shí)現(xiàn)以大數(shù)據(jù)為核心的精細(xì)化運(yùn)營(yíng) ——端到端大數(shù)據(jù)和AI能力 從數(shù)據(jù)接入集成到分析建模展現(xiàn)的全流程大數(shù)據(jù)與人工智能服務(wù),幫助客戶通過(guò)抄表數(shù)據(jù)實(shí)現(xiàn)用戶消費(fèi)行為分析、管網(wǎng)漏損監(jiān)測(cè)、分區(qū)壓力調(diào)節(jié)等業(yè)務(wù)洞察。來(lái)自:百科GaussDB 華為軟件 GaussDB華為軟件 云數(shù)據(jù)庫(kù)GaussDB,是華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),布局全球7大區(qū)域,1000+專業(yè)人才,10年+技術(shù)積淀,帶你了解GaussDB數(shù)據(jù)庫(kù)! 云數(shù)據(jù)庫(kù)GaussDB,是華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),,布局全球7大區(qū)域,10來(lái)自:專題同主辦,以”數(shù)聚粵港澳,智匯大灣區(qū)"為主題,面向中國(guó)大陸和中國(guó)港澳地區(qū)高等院校、專業(yè)研究機(jī)構(gòu)、數(shù)據(jù)分析公司、開(kāi)發(fā)者等專業(yè)對(duì)象舉辦的大型數(shù)據(jù)創(chuàng)新類競(jìng)賽。 【賽事簡(jiǎn)介】 “華為云杯”2019 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽是由深圳市政務(wù)服務(wù)數(shù)據(jù)管理局聯(lián)合深圳市坪山區(qū)人民政府與深圳市前海管理局共同主辦來(lái)自:百科云知識(shí) 使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘 使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘 時(shí)間:2020-11-24 14:45:13 本視頻主要為您介紹使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘的操作教程指導(dǎo)。 步驟: 建立數(shù)據(jù)連接-數(shù)據(jù)接入-數(shù)據(jù)開(kāi)發(fā)-作業(yè)監(jiān)控來(lái)自:百科什么是IoT數(shù)據(jù)分析?它的優(yōu)勢(shì)是什么? 什么是IoT數(shù)據(jù)分析?它的優(yōu)勢(shì)是什么? 時(shí)間:2022-09-22 18:31:20 一、什么是物聯(lián)網(wǎng)數(shù)據(jù)? 物聯(lián)網(wǎng)數(shù)據(jù)顧名思義是由各種物聯(lián)網(wǎng)設(shè)備、傳感器產(chǎn)生的數(shù)據(jù)。與其他的數(shù)據(jù)相比,物聯(lián)網(wǎng)數(shù)據(jù)具有“大、小、高、底”四個(gè)特點(diǎn): “大”即物聯(lián)網(wǎng)來(lái)自:百科通監(jiān)控中心的大屏上,交通專家根據(jù)實(shí)時(shí)數(shù)據(jù)下達(dá)各種交通控制決策,如紅綠燈時(shí)間調(diào)整等。為了實(shí)現(xiàn)高實(shí)時(shí)性,我們可以采用實(shí)時(shí)流分析方案,從 物聯(lián)網(wǎng)平臺(tái) 對(duì)外的數(shù)據(jù)通道中實(shí)時(shí)提取流動(dòng)數(shù)據(jù),分析和處理之后再輸出至數(shù)據(jù)通道繼續(xù)流轉(zhuǎn),保證呈現(xiàn)的數(shù)據(jù)永遠(yuǎn)是最“新鮮”的。 時(shí)序數(shù)據(jù) 有些數(shù)據(jù)實(shí)時(shí)性沒(méi)那么來(lái)自:百科GaussDB(DWS)應(yīng)用場(chǎng)景-實(shí)時(shí)數(shù)據(jù)分析 GaussDB(DWS)應(yīng)用場(chǎng)景-實(shí)時(shí)數(shù)據(jù)分析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫(kù) GaussDB(DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過(guò)程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫(kù):IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過(guò)流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫入GaussDB(DWS)。來(lái)自:百科電商大促用什么數(shù)據(jù)庫(kù) 電商大促用什么數(shù)據(jù)庫(kù) 該方案基于華為云GeminiDB數(shù)據(jù)庫(kù) ,結(jié)合數(shù)據(jù)三副本存儲(chǔ)、高性能存儲(chǔ)池和數(shù)據(jù)強(qiáng)一致性等核心技術(shù),為電商行業(yè)客戶提供高可靠、高性能和低成本的秒殺大促數(shù)據(jù)庫(kù)解決方案,解決大促期間海量用戶訪問(wèn)造成業(yè)務(wù)的卡頓、系統(tǒng)崩潰以及數(shù)據(jù)不一致導(dǎo)致超賣等痛點(diǎn)問(wèn)題。來(lái)自:專題
- 《工業(yè)APP:開(kāi)啟數(shù)字工業(yè)時(shí)代 》 —2.14 工業(yè)APP與工業(yè)軟件
- 《工業(yè)APP:開(kāi)啟數(shù)字工業(yè)時(shí)代 》 —2.16 工業(yè)APP與工業(yè)軟件的區(qū)別
- 工業(yè)4.0時(shí)代,大數(shù)據(jù)分析
- 工業(yè)數(shù)據(jù)分析為什么要用FusionInsight MRS IoTDB?
- 《工業(yè)APP:開(kāi)啟數(shù)字工業(yè)時(shí)代 》 —2.11 軟件化維
- HPC 軟件棧與數(shù)據(jù)分析軟件棧對(duì)比
- 數(shù)據(jù)分析八大常用分析模型
- 【業(yè)務(wù)數(shù)據(jù)分析】——十大常用數(shù)據(jù)分析方法
- 《DeepSeek賦能工業(yè)互聯(lián)網(wǎng):解鎖數(shù)據(jù)深度分析新姿勢(shì)》
- 基因數(shù)據(jù)分析軟件遷移-stringtie