- spark分布式規(guī)則引擎 內(nèi)容精選 換一換
-
分布式消息中間件的作用 分布式消息中間件的作用 華為云分布式消息中間件提供分布式消息Kafka版、分布式消息RabbitMQ版和分布式消息RocketMQ版。分布式消息中間件作用是為用戶應(yīng)用系統(tǒng)提供異步的、高可用的消息隊(duì)列服務(wù),實(shí)現(xiàn)應(yīng)用解耦、突發(fā)流量處理以及與第三方應(yīng)用的集成。來自:專題
- spark分布式規(guī)則引擎 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 分布式消息服務(wù) 分布式消息服務(wù) 時(shí)間:2020-10-29 09:52:14 分布式消息服務(wù)(Distributed Message Service)是一項(xiàng)基于高可用分布式集群技術(shù)的消息中間件服務(wù),具有大規(guī)模、高可靠、高并發(fā)訪問、可擴(kuò)展且完全托管的特點(diǎn)。使云應(yīng)來自:百科
- spark分布式規(guī)則引擎 更多內(nèi)容
-
讀寫分離實(shí)例 分布式緩存服務(wù)常見問題解答 分布式緩存服務(wù)常見問題解答 點(diǎn)擊了解更多常見問題 點(diǎn)擊了解更多常見問題 D CS 支持?jǐn)?shù)據(jù)持久化嗎? 對于分布式緩存服務(wù)Redis緩存實(shí)例,除單機(jī)實(shí)例不支持?jǐn)?shù)據(jù)持久化,其他實(shí)例類型都支持持久化。 分布式緩存服務(wù)的備份與恢復(fù)策略是什么? 分布式緩存服務(wù)來自:專題華為云計(jì)算 云知識(shí) 實(shí)時(shí)流計(jì)算服務(wù) 創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 時(shí)間:2020-11-25 15:19:18 本視頻主要為您介紹實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果的操作教程指導(dǎo)。 場景描述:來自:百科隨著大數(shù)據(jù)爆炸式的增長,應(yīng)用大規(guī)模數(shù)據(jù)處理系統(tǒng)分析大數(shù)據(jù)變得越來越重要。其中,Spark是當(dāng)今應(yīng)用最為廣泛通用的大數(shù)據(jù)先進(jìn)技術(shù)之一。BoostKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn);來自:百科重點(diǎn)投放哪些平臺(tái)。 優(yōu)勢 高效的Spark編程模型:使用Spark Streaming直接從DIS中獲取數(shù)據(jù),進(jìn)行數(shù)據(jù)清理等預(yù)處理操作。只需編寫處理邏輯,無需關(guān)心多線程模型。 簡單易用:直接使用標(biāo)準(zhǔn)SQL編寫指標(biāo)分析邏輯,無需關(guān)注背后復(fù)雜的分布式計(jì)算平臺(tái)。 按需計(jì)費(fèi): 日志分析 按實(shí)來自:百科HDFS是大數(shù)據(jù)上通用的分布式文件系統(tǒng)。 OBS 是對象存儲(chǔ)服務(wù),具有高可用低成本的特點(diǎn)。 HBase支持帶索引的數(shù)據(jù)存儲(chǔ),適合高性能基于索引查詢的場景。 4、數(shù)據(jù)融合處理 MapReduce提供多種主流計(jì)算引擎:MapReduce(批處理)、Tez(DAG模型)、Spark(內(nèi)存計(jì)算)、S來自:專題統(tǒng)一的管理機(jī)制 使用統(tǒng)一的 IAM 管理用戶(無需單獨(dú)創(chuàng)建DLI用戶),支持IAM細(xì)粒度授權(quán) 基因行業(yè) 基因數(shù)據(jù)處理 現(xiàn)在基因行業(yè)有很多基于Spark分布式框架的第三方分析庫,如ADAM、Hail等 痛點(diǎn): •安裝ADAM、Hail等分析庫比較復(fù)雜 •每次新建集群都需要安裝一遍 優(yōu)勢 支持自定義鏡像來自:百科Studio MRS Spark 通過MRS Spark節(jié)點(diǎn)實(shí)現(xiàn)在MRS中執(zhí)行預(yù)先定義的Spark作業(yè)。 數(shù)據(jù)開發(fā) 數(shù)據(jù)治理中心 作業(yè)節(jié)點(diǎn)MRS Spark 數(shù)據(jù)治理 中心 DataArts Studio MRS Spark Python 通過MRS Spark Python節(jié)點(diǎn)實(shí)現(xiàn)在MRS中執(zhí)行預(yù)先定義的Spark來自:專題超強(qiáng)寫入:相比于其他NoSQL服務(wù),擁有超強(qiáng)寫入性能。 大數(shù)據(jù)分析:結(jié)合Spark等工具,可以用于實(shí)時(shí)推薦等大數(shù)據(jù)場景。 金融行業(yè) 云數(shù)據(jù)庫 GaussDB NoSQL結(jié)合Spark等大數(shù)據(jù)分析工具,可應(yīng)用于金融行業(yè)的風(fēng)控體系,構(gòu)建反欺詐系統(tǒng)。 優(yōu)勢: 大數(shù)據(jù)分析:結(jié)合Spark等工具,可以進(jìn)行實(shí)時(shí)的反欺詐檢測。 GeminiDB來自:百科