- 數(shù)據(jù)倉(cāng)庫(kù)模型命名 內(nèi)容精選 換一換
-
基于行業(yè)領(lǐng)域知識(shí)庫(kù)快速構(gòu)建數(shù)據(jù)中臺(tái) 通過(guò)應(yīng)用華為在企業(yè)業(yè)務(wù)領(lǐng)域積累的豐富的行業(yè)領(lǐng)域模型和算法,幫助企業(yè)構(gòu)建數(shù)據(jù)中臺(tái),快速提升數(shù)據(jù)運(yùn)營(yíng)能力。 優(yōu)勢(shì) 多行業(yè)支持 覆蓋政務(wù)/稅務(wù)/城市/交通/園區(qū)等各行業(yè)。 標(biāo)準(zhǔn)規(guī)范支持 支持分層結(jié)構(gòu)的行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)。 領(lǐng)域模型豐富 支持包含人員/組織/事件/時(shí)空/車(chē)輛/資產(chǎn)/設(shè)備來(lái)自:百科手把手帶你進(jìn)行 AI 模型開(kāi)發(fā)和部署 手把手帶你進(jìn)行 AI 模型開(kāi)發(fā)和部署 時(shí)間:2021-04-27 14:56:49 內(nèi)容簡(jiǎn)介: 近年來(lái)越來(lái)越多的行業(yè)采用AI技術(shù)提升效率、降低成本,然而AI落地的過(guò)程確并不容易,AI在具體與業(yè)務(wù)結(jié)合時(shí)常常依賴(lài)于業(yè)務(wù)數(shù)據(jù)的采集、處理、模型訓(xùn)練、調(diào)優(yōu)、編來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)模型命名 相關(guān)內(nèi)容
-
護(hù)。 安全模型 安全模型提供“http”、“apikey”、“oauth2”、“openIdConnect”四種類(lèi)型。選擇不同類(lèi)型的安全模型后,需要在方案內(nèi)容中填寫(xiě)必要的配置信息,然后用于API設(shè)計(jì)中“安全方案”的引用。此外,每個(gè)安全模型的文檔頁(yè)面展示了所有引用該模型的API清單,便于后期維護(hù)。來(lái)自:專(zhuān)題BS,從 OBS 導(dǎo)入模型創(chuàng)建為AI應(yīng)用。 制作模型包,則需要符合一定的模型包規(guī)范。模型包里面必需包含“model”文件夾,“model”文件夾下面放置模型文件,模型配置文件,模型推理代碼文件。 模型包結(jié)構(gòu)示例(以TensorFlow模型包結(jié)構(gòu)為例) 發(fā)布該模型時(shí)只需要指定到“ocr”目錄。
- 數(shù)據(jù)倉(cāng)庫(kù)模型命名 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù) DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 時(shí)間:2021-03-08 15:02:51 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)(Data Warehouse Service,簡(jiǎn)稱(chēng)DWS)是一種即開(kāi)即用、來(lái)自:百科基本功能。 模型調(diào)優(yōu)利器:ModelArts模型評(píng)估診斷 ModelArts模型評(píng)估/診斷功能針對(duì)不同類(lèi)型模型的評(píng)估任務(wù),提供相應(yīng)的評(píng)估指標(biāo)。在展示評(píng)估結(jié)果的同時(shí),會(huì)根據(jù)不同的數(shù)據(jù)特征對(duì)模型進(jìn)行詳細(xì)的評(píng)估,獲得每個(gè)數(shù)據(jù)特征對(duì)評(píng)估指標(biāo)的敏感度,并給出優(yōu)化建議。 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)的“千里眼、順風(fēng)耳”來(lái)自:專(zhuān)題基于行業(yè)領(lǐng)域知識(shí)庫(kù)快速構(gòu)建數(shù)據(jù)中臺(tái) 通過(guò)應(yīng)用華為在企業(yè)業(yè)務(wù)領(lǐng)域積累的豐富的行業(yè)領(lǐng)域模型和算法,幫助企業(yè)構(gòu)建數(shù)據(jù)中臺(tái),快速提升數(shù)據(jù)運(yùn)營(yíng)能力。 優(yōu)勢(shì) 多行業(yè)支持 覆蓋政務(wù)/稅務(wù)/城市/交通/園區(qū)等各行業(yè)。 標(biāo)準(zhǔn)規(guī)范支持 支持分層結(jié)構(gòu)的行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)。 領(lǐng)域模型豐富 支持包含人員/組織/事件/時(shí)空/車(chē)輛/資產(chǎn)/設(shè)備來(lái)自:百科數(shù)據(jù)庫(kù)設(shè)計(jì)中的物理設(shè)計(jì)階段是指,在用戶(hù)確認(rèn)的邏輯模型基礎(chǔ)上,以數(shù)據(jù)庫(kù)系統(tǒng)運(yùn)行效率,業(yè)務(wù)操作效率,前端應(yīng)用效率等因素為出發(fā)點(diǎn)對(duì)模型進(jìn)行的調(diào)整。面向物理實(shí)施過(guò)程的具體細(xì)節(jié)。最終目的是轉(zhuǎn)化為目標(biāo)數(shù)據(jù)庫(kù)的可部署的定義語(yǔ)言(DDL)。 物理設(shè)計(jì)階段的工作任務(wù),包括但不限于: 實(shí)體非正則化處理; 表和字段的物理命名; 確定字段的類(lèi)型,長(zhǎng)度,精度,大小寫(xiě)敏感等屬性;來(lái)自:百科析。利用數(shù)據(jù)倉(cāng)庫(kù)服務(wù),帶您探索球星薪酬影響的決定性因素。 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)結(jié)合Python對(duì)球星薪酬進(jìn)行分析,探索影響球星薪酬的決定性因素 適合人群:對(duì)大數(shù)據(jù)技術(shù)感興趣的人員,社會(huì)大眾和高校師生 培訓(xùn)方案:數(shù)據(jù)倉(cāng)庫(kù)服務(wù)結(jié)合球星薪酬決定性因素分析的實(shí)踐 技術(shù)能力:掌握數(shù)據(jù)倉(cāng)庫(kù)服務(wù)等云服務(wù)的使用,提高大數(shù)據(jù)分析能力來(lái)自:專(zhuān)題資源和成本規(guī)劃 資源和成本規(guī)劃 資源和成本規(guī)劃 SAP最佳實(shí)踐匯總 通過(guò) CDN加速 OBS 視頻點(diǎn)播 :資源與成本規(guī)劃 選擇存儲(chǔ)模型 選擇存儲(chǔ)模型 選擇存儲(chǔ)模型 選擇存儲(chǔ)模型 健康檢查服務(wù):服務(wù)內(nèi)容 使用預(yù)簽名URL直傳OBS:資源和成本規(guī)劃 使用臨時(shí)安全憑證直傳OBS:資源和成本規(guī)劃 概覽來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門(mén)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶(hù)案例_GaussDB(DWS)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)兼容性