- 數(shù)據(jù)倉庫建模范式 內(nèi)容精選 換一換
-
數(shù)據(jù)倉庫 服務(wù)_SQL on Anywhere 數(shù)據(jù)倉庫服務(wù) GaussDB (DWS)_SQL on Anywhere 華為云數(shù)據(jù)倉庫服務(wù)-SQL on Anywhere 華為云數(shù)據(jù)倉庫服務(wù)-SQL on Anywhere 數(shù)據(jù)倉庫服務(wù)(Data Warehouse Service,來自:專題華為云計算 云知識 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)提供資產(chǎn)建模能力 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)提供資產(chǎn)建模能力 時間:2021-03-12 15:15:13 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計算 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)提供資產(chǎn)建模能力,物聯(lián)網(wǎng)數(shù)據(jù)分析資產(chǎn)模型基本概念包含: 資產(chǎn)——被管理的任何物理或邏輯的對象,比如產(chǎn)線,樓層,設(shè)備,人等;來自:百科
- 數(shù)據(jù)倉庫建模范式 相關(guān)內(nèi)容
-
[ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時從天級縮短至小時級 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS提升數(shù)據(jù)分析性能實(shí)現(xiàn)分析決策一體化案例來自:百科分析場景。 數(shù)據(jù)倉庫遷移 數(shù)據(jù)倉庫是企業(yè)的重要數(shù)據(jù)分析系統(tǒng),隨著業(yè)務(wù)量的增長,自建數(shù)倉性能逐漸不能滿足實(shí)際要求,同時擴(kuò)展性差、成本高,也使擴(kuò)容極為困難。DWS作為云上企業(yè)級數(shù)據(jù)倉庫,具備高性能、低成本、易擴(kuò)展等特性,滿足大數(shù)據(jù)時代企業(yè)數(shù)據(jù)倉庫業(yè)務(wù)訴求。 圖1數(shù)據(jù)倉庫遷移 優(yōu)勢 平滑遷移來自:百科
- 數(shù)據(jù)倉庫建模范式 更多內(nèi)容
-
TeraData數(shù)據(jù)倉庫架構(gòu)及特點(diǎn)介紹 TeraData數(shù)據(jù)倉庫架構(gòu)及特點(diǎn)介紹 時間:2021-03-03 11:43:26 數(shù)據(jù)倉庫 數(shù)據(jù)庫 Teradata數(shù)據(jù)倉庫擁有全球領(lǐng)先的技術(shù),其主要軟件和硬件產(chǎn)品包括:Teradata數(shù)據(jù)庫、Teradata數(shù)據(jù)倉庫軟件、企業(yè)數(shù)據(jù)倉庫、動態(tài)企業(yè)數(shù)據(jù)倉庫、數(shù)據(jù)倉庫專用平臺。來自:百科[ 免費(fèi)體驗(yàn) 中心]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時從天級縮短至小時級 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS提升數(shù)據(jù)分析性能實(shí)現(xiàn)分析決策一體化案例來自:百科類信息資源。 數(shù)據(jù)倉庫和數(shù)據(jù)庫的主要區(qū)別: 1、數(shù)據(jù)庫是面向事務(wù)的設(shè)計,數(shù)據(jù)倉庫是面向主題設(shè)計的。 2、數(shù)據(jù)庫一般存儲在線交易數(shù)據(jù),數(shù)據(jù)倉庫存儲的一般是歷史數(shù)據(jù)。 3、數(shù)據(jù)庫設(shè)計是盡量避免冗余,數(shù)據(jù)倉庫在設(shè)計是有意引入冗余。 4、數(shù)據(jù)庫是為捕獲數(shù)據(jù)而設(shè)計,數(shù)據(jù)倉庫是為分析數(shù)據(jù)而設(shè)計。來自:百科從數(shù)據(jù)采集-規(guī)范設(shè)計-質(zhì)量監(jiān)控-數(shù)據(jù)清洗-數(shù)據(jù)建模-數(shù)據(jù)聯(lián)接-數(shù)據(jù)整合-數(shù)據(jù)消費(fèi)-;智能分析,一站式數(shù)據(jù)智能運(yùn)營平臺,幫助企業(yè)快速構(gòu)建數(shù)據(jù)運(yùn)營能力。 優(yōu)勢 多種云服務(wù)作業(yè)編排 全鏈路 數(shù)據(jù)治理 管控 豐富數(shù)據(jù)引擎支持 支持對接所有華為云的 數(shù)據(jù)湖 與數(shù)據(jù)庫云服務(wù),也支持對接企業(yè)傳統(tǒng)數(shù)據(jù)倉庫,比如Oracle、Greenplum等。來自:百科智能數(shù)據(jù)規(guī)劃、自定義主題數(shù)據(jù)模型、統(tǒng)一數(shù)據(jù)標(biāo)準(zhǔn)、可視化數(shù)據(jù)建模、標(biāo)注數(shù)據(jù)標(biāo)簽等功能,有利于改善數(shù)據(jù)質(zhì)量,有效支撐經(jīng)營決策。 數(shù)據(jù)開發(fā) 大數(shù)據(jù)開發(fā)環(huán)境,降低用戶使用大數(shù)據(jù)的門檻,幫助用戶快速構(gòu)建大數(shù)據(jù)處理中心。支持?jǐn)?shù)據(jù)建模、數(shù)據(jù)集成、腳本開發(fā)、工作流編排等操作,輕松完成整個數(shù)據(jù)的處理分析流程。來自:百科市 DWS 云數(shù)據(jù)倉庫 超大規(guī)模:建成全球最大的金融數(shù)倉單集群480+節(jié)點(diǎn) 一站式分析:支持企業(yè)數(shù)倉、數(shù)據(jù)集市、IoT多場景 全場景部署:一套架構(gòu)支持多云部署,用戶體驗(yàn)一致 DataArts Studio 數(shù)據(jù)治理中心 一站式:全鏈路數(shù)據(jù)治理工具,提效7倍+ 建模快:一鍵導(dǎo)入復(fù)用資產(chǎn),建模從月->天來自:百科理解一旦確定下來,就應(yīng)作為企業(yè)層面的標(biāo)準(zhǔn)在企業(yè)內(nèi)被共同遵守。 模型設(shè)計:應(yīng)用關(guān)系建模和維度建模的方法,進(jìn)行分層建模。 關(guān)系建模:基于關(guān)系建模,新建SDI層和DWI層兩個模型。 維度建模:基于維度建模,新建DWR層模型并發(fā)布維度和事實(shí)表。 指標(biāo)設(shè)計:新建業(yè)務(wù)指標(biāo)和技術(shù)指標(biāo),技術(shù)指標(biāo)又分為原子指標(biāo)、衍生指標(biāo)和復(fù)合指標(biāo)。來自:專題
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS定價
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- ModelArts Studio大模型開發(fā)平臺
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)