- 數(shù)據(jù)倉(cāng)庫(kù)調(diào)度跑批 內(nèi)容精選 換一換
-
DLI 數(shù)據(jù)湖探索 (Data Lake Insight,簡(jiǎn)稱(chēng)DLI)是完全兼容Apache Spark和Apache Flink生態(tài), 實(shí)現(xiàn)批流一體的Serverless大數(shù)據(jù)計(jì)算分析服務(wù)。DLI支持多模引擎,企業(yè)僅需使用SQL或程序就可輕松完成異構(gòu)數(shù)據(jù)源的批處理、流處理、內(nèi)存計(jì)算、機(jī)器學(xué)習(xí)等,挖掘和探索數(shù)據(jù)價(jià)值來(lái)自:百科華為云計(jì)算 云知識(shí) GaussDB (DWS)應(yīng)用場(chǎng)景- 數(shù)據(jù)倉(cāng)庫(kù) 遷移 GaussDB(DWS)應(yīng)用場(chǎng)景-數(shù)據(jù)倉(cāng)庫(kù)遷移 時(shí)間:2021-06-17 12:36:40 數(shù)據(jù)庫(kù) GaussDB(DWS)在數(shù)據(jù)倉(cāng)庫(kù)遷移的應(yīng)用如下圖所示。遷移過(guò)程有如下的特點(diǎn): 1. 平滑遷移 GaussDB來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)調(diào)度跑批 相關(guān)內(nèi)容
-
系統(tǒng)面臨的基本挑戰(zhàn)并未發(fā)生重大變化。本課程包含數(shù)據(jù)倉(cāng)庫(kù)、維度建模、事態(tài)表、建模表、總線矩陣、緩慢變化維等多個(gè)數(shù)據(jù)倉(cāng)庫(kù)核心內(nèi)容,適合數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)師、工程師等大數(shù)據(jù)愛(ài)好者參與學(xué)習(xí)。 課程目標(biāo) 1.了解數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)和維度模型: 對(duì)數(shù)據(jù)倉(cāng)庫(kù)和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法來(lái)自:百科ORACLE數(shù)據(jù)倉(cāng)庫(kù) Sparxsystems Enterprise Architect Pro ORACLE數(shù)據(jù)倉(cāng)庫(kù) Sparxsystems Enterprise Architect Pro 快速直觀的建模與設(shè)計(jì)工具,完美的企業(yè)級(jí)可視化解決方案,分析,建模,測(cè)試和維護(hù)您的所有系統(tǒng),軟件,流程和架構(gòu)。來(lái)自:專(zhuān)題
- 數(shù)據(jù)倉(cāng)庫(kù)調(diào)度跑批 更多內(nèi)容
-
●多種類(lèi)型作業(yè)混合部署:支持AI、大數(shù)據(jù)、HPC作業(yè)類(lèi)型混合部署。 ●多隊(duì)列場(chǎng)景調(diào)度優(yōu)化:支持分隊(duì)列調(diào)度,提供隊(duì)列優(yōu)先級(jí)、多級(jí)隊(duì)列等復(fù)雜任務(wù)調(diào)度能力。 ●多種高級(jí)調(diào)度策略:支持gang-scheduling、公平調(diào)度、資源搶占、GPU拓?fù)涞雀呒?jí)調(diào)度策略。 ●多任務(wù)模板:支持單一Job多任務(wù)模板定義,打破來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉(cāng)庫(kù)DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 時(shí)間:2021-03-08 14:54:32 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)(Data Warehouse Service,簡(jiǎn)稱(chēng)DWS)是一種即開(kāi)即用、安全可靠的在線數(shù)據(jù)倉(cāng)庫(kù)服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。來(lái)自:百科
GaussDB(DWS)服務(wù)即開(kāi)即用 相比以前動(dòng)輒長(zhǎng)達(dá)數(shù)月的數(shù)據(jù)倉(cāng)庫(kù)選型采購(gòu)過(guò)程,在公有云上開(kāi)通使用數(shù)據(jù)倉(cāng)庫(kù)服務(wù)只需要數(shù)分鐘時(shí)間簡(jiǎn)化了企業(yè)用戶的購(gòu)買(mǎi)過(guò)程,使用數(shù)據(jù)倉(cāng)庫(kù)的方式,降低使用數(shù)據(jù)倉(cāng)庫(kù)的代價(jià)和門(mén)檻,讓數(shù)據(jù)倉(cāng)庫(kù)實(shí)實(shí)在在地走進(jìn)千萬(wàn)家大中小企業(yè),讓數(shù)據(jù)為企業(yè)的發(fā)展和決策提供其應(yīng)有的價(jià)值。來(lái)自:百科
DLI 數(shù)據(jù)湖 探索(Data Lake Insight,簡(jiǎn)稱(chēng)DLI)是完全兼容Apache Spark和Apache Flink生態(tài), 實(shí)現(xiàn)批流一體的Serverless大數(shù)據(jù)計(jì)算分析服務(wù)。DLI支持多模引擎,企業(yè)僅需使用SQL或程序就可輕松完成異構(gòu)數(shù)據(jù)源的批處理、流處理、內(nèi)存計(jì)算、機(jī)器學(xué)習(xí)等,挖掘和探索數(shù)據(jù)價(jià)值來(lái)自:百科
點(diǎn): 預(yù)測(cè)與決策解耦。預(yù)測(cè)精度和調(diào)度成本之間的權(quán)衡來(lái)自于預(yù)測(cè)和決策的耦合,即往往在調(diào)度期間進(jìn)行代價(jià)高昂的模型推斷。我們可以將預(yù)測(cè)和決策解耦。具體來(lái)說(shuō),調(diào)度器可以在新實(shí)例到來(lái)之前對(duì)資源環(huán)境進(jìn)行建模,并基于假設(shè)進(jìn)行提前預(yù)測(cè)。當(dāng)一個(gè)新的實(shí)例到來(lái),并且調(diào)度時(shí)的資源環(huán)境符合我們之前的假設(shè)時(shí)來(lái)自:百科
全球加速如何根據(jù)時(shí)延實(shí)現(xiàn)流量調(diào)度 全球加速如何根據(jù)時(shí)延實(shí)現(xiàn)流量調(diào)度 流量調(diào)度是指配置到不同終端節(jié)點(diǎn)組的流量比例。如果監(jiān)聽(tīng)器中有多個(gè)終端節(jié)點(diǎn)組,分配流量時(shí)優(yōu)先選擇時(shí)延最低的終端節(jié)點(diǎn)組,并按照該終端節(jié)點(diǎn)組的流量調(diào)度值分配流量,然后再向其他終端節(jié)點(diǎn)組分配其余流量。 流量調(diào)度是指配置到不同終端節(jié)來(lái)自:專(zhuān)題
數(shù)據(jù)治理 運(yùn)營(yíng)過(guò)程可視,托拉拽配置,無(wú)需編碼;處理結(jié)果可視,更直觀,便于交互和探索;數(shù)據(jù)資產(chǎn)管理可視,支持鉆取、溯源等。 統(tǒng)一調(diào)度和運(yùn)維 全面托管的調(diào)度,支持按時(shí)間、事件觸發(fā)的任務(wù)觸發(fā)機(jī)制,支持分鐘、小時(shí)、天、周和月等多種調(diào)度周期。 可視化的任務(wù)運(yùn)維中心,監(jiān)控所有任務(wù)的運(yùn)行,支持配置各類(lèi)報(bào)警通知,便于責(zé)任人實(shí)時(shí)獲取任務(wù)的情況,保證業(yè)務(wù)正常運(yùn)行。來(lái)自:百科
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 時(shí)間:2021-03-08 15:02:51 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)(Data Warehouse Service,簡(jiǎn)稱(chēng)DWS)是一種即開(kāi)即用、來(lái)自:百科
,此桶若存在,會(huì)跳過(guò)創(chuàng)建。 作業(yè)配置了周期調(diào)度,但是實(shí)例監(jiān)控沒(méi)有作業(yè)運(yùn)行調(diào)度記錄? 1.在“運(yùn)維調(diào)度 > 作業(yè)監(jiān)控”界面確認(rèn)作業(yè)的調(diào)度狀態(tài)是否是調(diào)度中,只有調(diào)度中的作業(yè)到了調(diào)度周期后才會(huì)調(diào)度。 2.如果作業(yè)有依賴于其他作業(yè),在“運(yùn)維調(diào)度 > 實(shí)例監(jiān)控”界面,查看依賴作業(yè)的運(yùn)行狀態(tài)來(lái)自:專(zhuān)題
- 跑批為什么這么難
- Java開(kāi)源專(zhuān)業(yè)計(jì)算引擎:跑批真的這么難嗎?
- 【數(shù)據(jù)倉(cāng)庫(kù)】雙集群系統(tǒng)方案探討
- Flink 實(shí)時(shí)計(jì)算在微博的應(yīng)用
- 從0到1搭建大數(shù)據(jù)平臺(tái)之調(diào)度系統(tǒng)
- 【Linux 內(nèi)核】CFS 調(diào)度器 ④ ( 調(diào)度子系統(tǒng)組件模塊 | 主調(diào)度器、周期性調(diào)度器 | 調(diào)度器類(lèi) )
- 數(shù)倉(cāng)系統(tǒng)遷移方案
- 進(jìn)程調(diào)度(優(yōu)先級(jí)調(diào)度)-----編程模擬實(shí)現(xiàn)HRRN調(diào)度算法
- DLF調(diào)度類(lèi)型之事件驅(qū)動(dòng)調(diào)度
- 祝賀!國(guó)內(nèi)首個(gè)大規(guī)模金融云數(shù)倉(cāng)全面上線
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門(mén)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 華為云數(shù)據(jù)湖探索服務(wù) DLI
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)