- 數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)模型分哪幾種 內(nèi)容精選 換一換
-
好用的數(shù)據(jù)處理方案-數(shù)據(jù)工坊DWR 好用的數(shù)據(jù)處理方案-數(shù)據(jù)工坊DWR 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。來(lái)自:專題下載量大的內(nèi)容分發(fā)到各地的 CDN 節(jié)點(diǎn),有效減輕源站的壓力,同時(shí)保證了客戶端高速下載的需求。 CDN加速 點(diǎn)播加速 適用于提供音 視頻點(diǎn)播 服務(wù)的客戶。例如:在線教育類網(wǎng)站、在線視頻分享網(wǎng)站、互聯(lián)網(wǎng)電視點(diǎn)播平臺(tái)、音樂(lè)視頻點(diǎn)播APP等。傳統(tǒng)的點(diǎn)播服務(wù)會(huì)加大服務(wù)器的負(fù)載,并消耗巨大的帶寬資源來(lái)自:專題
- 數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)模型分哪幾種 相關(guān)內(nèi)容
-
降低成本 這款產(chǎn)品的設(shè)計(jì)和生產(chǎn)過(guò)程都經(jīng)過(guò)精心優(yōu)化,以降低成本。這不僅使我們能夠以更低的價(jià)格提供商品,也使我們的客戶能夠在購(gòu)買時(shí)節(jié)省更多的費(fèi)用。 盈利分析 我們對(duì)這款產(chǎn)品的盈利潛力進(jìn)行了深入的分析。通過(guò)精確的市場(chǎng)定位和合理的 定價(jià) 策略,我們確信這款產(chǎn)品將為客戶帶來(lái)良好的投資回報(bào)。 成本效益高來(lái)自:專題安全可靠的在線 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。 助力某高校打破數(shù)據(jù)孤島,實(shí)現(xiàn)數(shù)據(jù)綜合分析,性能提升10倍 客戶痛點(diǎn): 【數(shù)據(jù)分散】:現(xiàn)有業(yè)務(wù)系統(tǒng)部署在不同環(huán)境,包括華為云和用戶本地IDC,不能統(tǒng)一分析; 【數(shù)據(jù)量大】:數(shù)據(jù)量不斷增大,查詢性能下降; 【業(yè)務(wù)來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)模型分哪幾種 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉(cāng)庫(kù)DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 時(shí)間:2021-03-08 14:54:32 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)(Data Warehouse Service,簡(jiǎn)稱DWS)是一種即開(kāi)即用、安全可靠的在線數(shù)據(jù)倉(cāng)庫(kù)服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。來(lái)自:百科規(guī)范設(shè)計(jì) 作為 數(shù)據(jù)治理 的一個(gè)核心模塊,承擔(dān)數(shù)據(jù)治理過(guò)程中的數(shù)據(jù)加工并業(yè)務(wù)化的功能,提供智能數(shù)據(jù)規(guī)劃、自定義主題數(shù)據(jù)模型、統(tǒng)一數(shù)據(jù)標(biāo)準(zhǔn)、可視化數(shù)據(jù)建模、標(biāo)注數(shù)據(jù)標(biāo)簽等功能,有利于改善數(shù)據(jù)質(zhì)量,有效支撐經(jīng)營(yíng)決策。 數(shù)據(jù)開(kāi)發(fā) 大數(shù)據(jù)開(kāi)發(fā)環(huán)境,降低用戶使用大數(shù)據(jù)的門(mén)檻,幫助用戶快速構(gòu)建大來(lái)自:百科數(shù)據(jù)標(biāo)準(zhǔn)管理著重建立統(tǒng)一的數(shù)據(jù)語(yǔ)言,L1到L5數(shù)據(jù)層級(jí)業(yè)務(wù)對(duì)象的定義是數(shù)據(jù)標(biāo)準(zhǔn)的載體,并對(duì)應(yīng)發(fā)布包括L1到L5數(shù)據(jù)層級(jí)的數(shù)據(jù)標(biāo)準(zhǔn)。各業(yè)務(wù)對(duì)象對(duì)應(yīng)物理實(shí)現(xiàn)的IT系統(tǒng)需發(fā)布相應(yīng)的數(shù)據(jù)字典并進(jìn)行數(shù)據(jù)源認(rèn)證。而對(duì)于梳理出來(lái),但沒(méi)有落IT系統(tǒng)的業(yè)務(wù)對(duì)象,需在后繼的開(kāi)發(fā)中進(jìn)行數(shù)字化落地。 數(shù)據(jù)開(kāi)發(fā)來(lái)自:專題WS Express可直接對(duì)存儲(chǔ)在 對(duì)象存儲(chǔ)OBS 上的大數(shù)據(jù)平臺(tái)集成、處理后的數(shù)據(jù)進(jìn)行分析。 優(yōu)勢(shì) 統(tǒng)一分析入口:以DWS的SQL作為上層應(yīng)用的統(tǒng)一入口,應(yīng)用開(kāi)發(fā)人員使用熟悉的SQL語(yǔ)言即可訪問(wèn)所有數(shù)據(jù)。 實(shí)時(shí)交互式分析:針對(duì)即時(shí)的分析需求,分析人員通過(guò)DWS Express,可實(shí)時(shí)從大數(shù)據(jù)平臺(tái)中獲取信息。來(lái)自:專題MRS 架構(gòu)介紹 MRS架構(gòu)包括了基礎(chǔ)設(shè)施和大數(shù)據(jù)處理流程各個(gè)階段的能力。 基礎(chǔ)設(shè)施 MRS基于華為云 彈性云服務(wù)器 E CS 構(gòu)建的大數(shù)據(jù)集群,充分利用了其虛擬化層的高可靠、高安全的能力。 數(shù)據(jù)采集 數(shù)據(jù)采集層提供了數(shù)據(jù)接入到MRS集群的能力,包括Flume(數(shù)據(jù)采集)、Loader(關(guān)系型數(shù)據(jù)來(lái)自:專題邏輯設(shè)計(jì)階段是將概念模型轉(zhuǎn)化為具體的數(shù)據(jù)模型的過(guò)程。 按照概念設(shè)計(jì)階段建立的基本E-R圖,按選定的目標(biāo)數(shù)據(jù)模型(層次、網(wǎng)狀、關(guān)系、面向?qū)ο螅?,轉(zhuǎn)換成相應(yīng)的邏輯模型。 對(duì)于關(guān)系型數(shù)據(jù)庫(kù)來(lái)說(shuō),這種轉(zhuǎn)換要符合關(guān)系數(shù)據(jù)模型的原則,得到的就是邏輯數(shù)據(jù)模型。 這個(gè)階段主要的工作就是確定關(guān)系模型里面的屬性和碼(或者說(shuō)主鍵)。來(lái)自:百科利用DWS進(jìn)行數(shù)據(jù)清洗加工,支持?jǐn)?shù)據(jù)更新; 利用DWS的標(biāo)準(zhǔn)SQL實(shí)現(xiàn)數(shù)據(jù)復(fù)雜關(guān)聯(lián)查詢。 客戶價(jià)值: 數(shù)據(jù)處理耗時(shí)從1天降至3個(gè)小時(shí); 開(kāi)發(fā)人員基于SQL語(yǔ)言可快速開(kāi)發(fā)分析應(yīng)用,同時(shí)將可分析維度從2-3個(gè)擴(kuò)展為5-10個(gè),擴(kuò)充業(yè)務(wù)范圍; 在DWS中維護(hù)維度數(shù)據(jù),再更新ES中數(shù)據(jù),降低了數(shù)據(jù)更新的工作量。 文中課程來(lái)自:百科限分離的目的。可以通過(guò)虛擬私有云對(duì) 云數(shù)據(jù)庫(kù) RDS實(shí)例所在的安全組入站、出站規(guī)則進(jìn)行限制,從而控制可以連接數(shù)據(jù)庫(kù)的網(wǎng)絡(luò)范圍。 數(shù)據(jù)刪除:刪除云數(shù)據(jù)庫(kù)RDS實(shí)例時(shí),存儲(chǔ)在數(shù)據(jù)庫(kù)實(shí)例中的數(shù)據(jù)都會(huì)被刪除。安全刪除不僅包括數(shù)據(jù)庫(kù)實(shí)例所掛載的磁盤(pán),也包括自動(dòng)備份數(shù)據(jù)的存儲(chǔ)空間。刪除的實(shí)例可以來(lái)自:專題數(shù)據(jù)模型是數(shù)據(jù)庫(kù)系統(tǒng)的核心和基礎(chǔ),所以數(shù)據(jù)庫(kù)系統(tǒng)的發(fā)展和數(shù)據(jù)模型的發(fā)展密不可分,數(shù)據(jù)庫(kù)模型的劃分維度是數(shù)據(jù)庫(kù)系統(tǒng)劃分的一個(gè)重要標(biāo)準(zhǔn)。 2、與其它計(jì)算機(jī)技術(shù)交叉結(jié)合。 其他計(jì)算機(jī)新技術(shù)層出不窮,數(shù)據(jù)庫(kù)和其他計(jì)算機(jī)技術(shù)交叉結(jié)合,是數(shù)據(jù)庫(kù)技術(shù)的一個(gè)顯著特征。 3、面向應(yīng)用領(lǐng)域發(fā)展數(shù)據(jù)庫(kù)新技術(shù)。 通用數(shù)來(lái)自:百科庫(kù)服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。 助力某銀行提升數(shù)據(jù)分析性能30%,實(shí)現(xiàn)分析決策一體化 應(yīng)用場(chǎng)景:替換Oracle、TD、GP、Vertica、Gbase、Impala數(shù)據(jù)倉(cāng)庫(kù),建設(shè)滿足未來(lái)IT架構(gòu)云化演進(jìn)的分布式數(shù)據(jù)倉(cāng)庫(kù)。 客戶痛點(diǎn): Teradata成本高,一體機(jī)封閉架構(gòu),技術(shù)無(wú)法自主可控;來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門(mén)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)治理中心
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)