- 使用數(shù)據(jù)倉庫的案例 內(nèi)容精選 換一換
-
GaussDB (for Cassandra)在氣象業(yè)中使用的案例 GaussDB(for Cassandra)在氣象業(yè)中使用的案例 時(shí)間:2021-06-17 17:09:10 數(shù)據(jù)庫 GaussDB(for Cassandra)在氣象業(yè)中使用的案例如下圖所示: 文中課程 更多精彩課程、實(shí)驗(yàn)來自:百科數(shù)據(jù)統(tǒng)一分析、管理效果顯著,節(jié)約50%數(shù)據(jù)處理時(shí)間; 降低開發(fā)、運(yùn)維投入,成本下降50%; 解決原有系統(tǒng)數(shù)據(jù)查詢慢或沒結(jié)果的問題。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴來自:百科
- 使用數(shù)據(jù)倉庫的案例 相關(guān)內(nèi)容
-
另一方面如果鎖住了多張表,又會(huì)阻擋數(shù)據(jù)庫表單更新的事務(wù),造成業(yè)務(wù)的延時(shí)甚至中斷。 解決方案 數(shù)據(jù)倉庫 主要適用于企業(yè)數(shù)據(jù)的關(guān)聯(lián)和聚合等分析場(chǎng)景,并從中發(fā)掘出數(shù)據(jù)背后的商業(yè)情報(bào)供決策者參考。這里的數(shù)據(jù)發(fā)掘主要指涉及多張表的大范圍的數(shù)據(jù)聚合和關(guān)聯(lián)的復(fù)雜查詢。 使用數(shù)據(jù)倉庫,通過某個(gè)數(shù)據(jù)轉(zhuǎn)換(ETL)的過程,業(yè)務(wù)運(yùn)營(yíng)數(shù)來自:百科統(tǒng)產(chǎn)生的。批量數(shù)據(jù)處理系統(tǒng)一般對(duì)計(jì)算資源要求較多,對(duì)響應(yīng)時(shí)延的要求較低,一般都選擇在業(yè)務(wù)系統(tǒng)不那么繁忙的夜間運(yùn)行。 在數(shù)據(jù)時(shí)代,數(shù)據(jù)倉庫的應(yīng)用范圍也更加的寬廣。通過數(shù)據(jù)快速靈活地調(diào)整商業(yè)決策也越來越受到廣大企業(yè)用戶的認(rèn)可,并把它應(yīng)用到自己的生產(chǎn)服務(wù)過程當(dāng)中。我們每天都在使用的手機(jī)來自:百科
- 使用數(shù)據(jù)倉庫的案例 更多內(nèi)容
-
利用DWS進(jìn)行數(shù)據(jù)清洗加工,支持?jǐn)?shù)據(jù)更新; 利用DWS的標(biāo)準(zhǔn)SQL實(shí)現(xiàn)數(shù)據(jù)復(fù)雜關(guān)聯(lián)查詢。 客戶價(jià)值: 數(shù)據(jù)處理耗時(shí)從1天降至3個(gè)小時(shí); 開發(fā)人員基于SQL語言可快速開發(fā)分析應(yīng)用,同時(shí)將可分析維度從2-3個(gè)擴(kuò)展為5-10個(gè),擴(kuò)充業(yè)務(wù)范圍; 在DWS中維護(hù)維度數(shù)據(jù),再更新ES中數(shù)據(jù),降低了數(shù)據(jù)更新的工作量。 文中課程來自:百科隨著IT、信息技術(shù)的發(fā)展和進(jìn)步,數(shù)據(jù)資源已經(jīng)成為企業(yè)的核心資源。整合數(shù)據(jù)資源,構(gòu)建大數(shù)據(jù)平臺(tái),發(fā)現(xiàn)數(shù)據(jù)價(jià)值,成為企業(yè)經(jīng)營(yíng)的新趨勢(shì)和迫切訴求。而如何從海量數(shù)據(jù)中快速挖掘“價(jià)值”,成為助力客戶實(shí)現(xiàn)預(yù)測(cè)性分析的關(guān)鍵要素。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉庫在整個(gè)BI系統(tǒng)中起到了支柱的角色,更是來自:百科隨著數(shù)據(jù)庫技術(shù)和分布式技術(shù)的長(zhǎng)足發(fā)展,數(shù)據(jù)倉庫也朝著分布式數(shù)據(jù)庫的架構(gòu)演進(jìn)。目前比較流行的分布式數(shù)據(jù)倉庫架構(gòu)是MPP(Massive-Parallel Processing)架構(gòu)。MPP架構(gòu)特性如下: MPP架構(gòu)的數(shù)據(jù)倉庫一般由多個(gè)對(duì)等的數(shù)據(jù)計(jì)算節(jié)點(diǎn)構(gòu)成。 MPP架構(gòu)的數(shù)據(jù)倉庫中的數(shù)據(jù)被按照某來自:百科面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于讓云無處不在,讓智能無所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面 [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi)來自:百科隨著IT、信息技術(shù)的發(fā)展和進(jìn)步,數(shù)據(jù)資源已經(jīng)成為企業(yè)的核心資源。整合數(shù)據(jù)資源,構(gòu)建大數(shù)據(jù)平臺(tái),發(fā)現(xiàn)數(shù)據(jù)價(jià)值,成為企業(yè)經(jīng)營(yíng)的新趨勢(shì)和迫切訴求。而如何從海量數(shù)據(jù)中快速挖掘“價(jià)值”,成為助力客戶實(shí)現(xiàn)預(yù)測(cè)性分析的關(guān)鍵要素。 圖2大數(shù)據(jù)融合分析 優(yōu)勢(shì) 統(tǒng)一分析入口 以DWS的SQL作為上層應(yīng)用的統(tǒng)一入來自:百科
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) DWS
- GeminiDB Cassandra 接口
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 融合視頻商業(yè)案例
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具