- lbp卷積神經(jīng)網(wǎng)絡(luò)人臉識(shí)別代碼 內(nèi)容精選 換一換
-
研究領(lǐng)域之一,它衍生出了一大批快速發(fā)展且具有實(shí)際作用的應(yīng)用,包括 人臉識(shí)別 、圖像檢測(cè)、目標(biāo)監(jiān)測(cè)以及智能駕駛等。這一切本質(zhì)都是對(duì)圖像數(shù)據(jù)進(jìn)行處理,本課程就圖像處理理論及相應(yīng)技術(shù)做了介紹,包括傳統(tǒng)特征提取算法和卷積神經(jīng)網(wǎng)絡(luò),學(xué)習(xí)時(shí)注意兩者的區(qū)別。 目標(biāo)學(xué)員 1、希望成為企業(yè)AI工程師的人員來(lái)自:百科使用MindSpore訓(xùn)練手寫(xiě)數(shù)字識(shí)別模型 基于昇騰AI處理器的算子開(kāi)發(fā) 電子相冊(cè)智慧整理 基于卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)景區(qū)精準(zhǔn)識(shí)別場(chǎng)景 使用MindSpore訓(xùn)練手寫(xiě)數(shù)字識(shí)別模型 基于昇騰AI處理器的算子開(kāi)發(fā) 電子相冊(cè)智慧整理 基于卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)景區(qū)精準(zhǔn)識(shí)別場(chǎng)景 HCIA-AI HCIA-AI 華為認(rèn)證人工智能工程師來(lái)自:專(zhuān)題
- lbp卷積神經(jīng)網(wǎng)絡(luò)人臉識(shí)別代碼 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員來(lái)自:百科LeCun等人構(gòu)建的卷積神經(jīng)網(wǎng)絡(luò)LeNet-5在手寫(xiě)數(shù)字識(shí)別問(wèn)題中取得成功 ,被譽(yù)為卷積神經(jīng)網(wǎng)絡(luò)的“Hello Word”。LeNet-5以及在此之后產(chǎn)生的變體定義了現(xiàn)代卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu),可謂入門(mén)級(jí)神經(jīng)網(wǎng)絡(luò)模型。本次實(shí)踐使用的模型正是LeNet-5。 LeNet-5由輸入層、卷積層、池化來(lái)自:百科
- lbp卷積神經(jīng)網(wǎng)絡(luò)人臉識(shí)別代碼 更多內(nèi)容
-
標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪(fǎng)問(wèn)接口,使用方便,用戶(hù)的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽來(lái)自:百科云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門(mén)的話(huà)題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來(lái)自:百科。 課程簡(jiǎn)介 本課程介紹了人臉識(shí)別特性、應(yīng)用場(chǎng)景等,也包括價(jià)格、產(chǎn)品路標(biāo)等的介紹。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),掌握人臉識(shí)別服務(wù)特性及應(yīng)用。 課程大綱 第1章 人臉識(shí)別服務(wù)介紹 第2章 人臉識(shí)別服務(wù)應(yīng)用場(chǎng)景 第3章 人臉識(shí)別服務(wù)計(jì)費(fèi)說(shuō)明 第4章 人臉識(shí)別服務(wù)產(chǎn)品路標(biāo)及銷(xiāo)售策略 第5章來(lái)自:百科視頻監(jiān)控 視頻檢測(cè) 人工智能 機(jī)器視覺(jué) 商品介紹 電瓶車(chē)起火事件時(shí)有發(fā)生,為保證樓宇公共安全,禁止電瓶車(chē)進(jìn)入,該產(chǎn)品采用AI智能算法,利用卷積神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)深度學(xué)習(xí)實(shí)現(xiàn)電瓶車(chē)檢測(cè)功能。 電梯內(nèi)電瓶車(chē)檢測(cè)商品介紹: 應(yīng)用場(chǎng)景: 隨著電瓶車(chē)越來(lái)越受歡迎,電瓶車(chē)起火事件也時(shí)有發(fā)生。特別來(lái)自:云商店DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科基于對(duì)視頻的前后幀信息、光流運(yùn)動(dòng)信息分析、場(chǎng)景內(nèi)容信息識(shí)別等分析,檢測(cè)和識(shí)別視頻動(dòng)作 優(yōu)勢(shì) 多模態(tài)識(shí)別 綜合圖像、光流、聲音等信息,識(shí)別動(dòng)作更準(zhǔn)確 識(shí)別準(zhǔn)確 采用3D卷積神經(jīng)網(wǎng)絡(luò)算法,動(dòng)作識(shí)別準(zhǔn)確度高 對(duì)復(fù)雜場(chǎng)景魯棒性強(qiáng) 對(duì)不同天氣條件、不同的攝像頭角度等復(fù)雜場(chǎng)景的視頻動(dòng)作識(shí)別具有良好的魯棒性 建議搭配使用: 對(duì)象存儲(chǔ)服務(wù) OBS來(lái)自:百科華為云計(jì)算 云知識(shí) 框架管理器離線(xiàn)模型生成介紹 框架管理器離線(xiàn)模型生成介紹 時(shí)間:2020-08-19 17:00:58 離線(xiàn)模型生成以卷積神經(jīng)網(wǎng)絡(luò)為例,在深度學(xué)習(xí)框架下構(gòu)造好相應(yīng)的網(wǎng)絡(luò)模型,并且訓(xùn)練好原始數(shù)據(jù),再通過(guò)離線(xiàn)模型生成器進(jìn)行算子調(diào)度優(yōu)化、權(quán)重?cái)?shù)據(jù)重排和壓縮、內(nèi)存優(yōu)化等,來(lái)自:百科基于ModelArts實(shí)現(xiàn)人臉識(shí)別 基于ModelArts實(shí)現(xiàn)人臉識(shí)別 時(shí)間:2020-12-02 11:19:20 本實(shí)驗(yàn)指導(dǎo)用戶(hù)在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建人臉識(shí)別應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò);來(lái)自:百科流程編排器負(fù)責(zé)完成神經(jīng)網(wǎng)絡(luò)在昇騰AI處理器上的落地與實(shí)現(xiàn),統(tǒng)籌了整個(gè)神經(jīng)網(wǎng)絡(luò)生效的過(guò)程。 數(shù)字視覺(jué)預(yù)處理模塊在輸入之前進(jìn)行一次數(shù)據(jù)處理和修飾,來(lái)滿(mǎn)足計(jì)算的格式需求。 張量加速引擎作為神經(jīng)網(wǎng)絡(luò)算子兵工廠(chǎng),為神經(jīng)網(wǎng)絡(luò)模型源源不斷提供功能強(qiáng)大的計(jì)算算子。 框架管理器將原始神經(jīng)網(wǎng)絡(luò)模型轉(zhuǎn)換成昇來(lái)自:百科
- 【人臉識(shí)別】基于matlab GUI LBP人臉識(shí)別【含Matlab源碼 1282期】
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)
- 《Python人臉識(shí)別:從入門(mén)到工程實(shí)踐》 ——3.6.2 LBP特征
- 《探秘卷積神經(jīng)網(wǎng)絡(luò)的核心—卷積核》
- 卷積神經(jīng)網(wǎng)絡(luò)中卷積是什么為什么要使用卷積核運(yùn)算
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第7篇:卷積神經(jīng)網(wǎng)絡(luò),3.1 卷積神經(jīng)網(wǎng)絡(luò)(CNN)原理【附代碼文檔】
- 人臉識(shí)別技術(shù)在工業(yè)應(yīng)用中的核心算法與實(shí)現(xiàn)解析
- LBP簡(jiǎn)介
- Excel實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)