- ae做神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
-JPEGD模塊對JPEG格式的圖片進(jìn)行解碼,將原始輸入的JPEG圖片轉(zhuǎn)換成YUV數(shù)據(jù),對神經(jīng)網(wǎng)絡(luò)的推理輸入數(shù)據(jù)進(jìn)行預(yù)處理。 -JPEG圖片處理完成后,需要用JPEGE編碼模塊對處理后的數(shù)據(jù)進(jìn)行JPEG格式還原,用于神經(jīng)網(wǎng)絡(luò)的推理輸出數(shù)據(jù)的后處理。 -當(dāng)輸入圖片格式為PNG時(shí),需要調(diào)用PNGD解碼來自:百科https://{erouter_endpoint}/v3/08d5a9564a704afda6039ae2babbef3c/enterprise-router/ instances/08d5a9564a704afda6039ae2babbef3c 響應(yīng)示例 狀態(tài)碼: 200 OK { "instance"來自:百科
- ae做神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
安全組描述 請求示例 更新id為d29ae17d-f355-4992-8747-1fb66cc9afd2的安全組,名稱更新為sg-test02。 PUT https://{Endpoint}/v2.0/security-groups/d29ae17d-f355-4992-8747-1fb66cc9afd2來自:百科圖像的裁剪與縮放。 上圖展示了一種典型改變圖像尺寸的裁剪和補(bǔ)零操作,VPC在原圖像中取出的待處理圖像部分,再將這部分進(jìn)行補(bǔ)零操作,在卷積神經(jīng)網(wǎng)絡(luò)計(jì)算過程中保留邊緣的特征信息。補(bǔ)零操作需要用到上、下、左、右四個填充尺寸,在補(bǔ)零區(qū)域中進(jìn)行圖像邊緣擴(kuò)充,最后得到可以直接計(jì)算的補(bǔ)零后圖像。來自:百科
- ae做神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開發(fā),通過該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過程和方法。 基本要求: 1. 對業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來自:百科類、基于場景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識別 利用深度神經(jīng)網(wǎng)絡(luò)模型對圖片內(nèi)容進(jìn)行檢測,準(zhǔn)確識別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識別來自:百科簽 視頻 OCR 識別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢 識別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識別精度高,支持實(shí)時(shí)識別與檢測 簡單易用 提供符合RESTful的API訪問接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽 層來自:百科目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測、扭曲校正、文本內(nèi)容檢測、圖像內(nèi)容檢測和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對圖片內(nèi)容進(jìn)行檢測,準(zhǔn)確識別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人來自:百科