- ae做神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
-JPEGD模塊對(duì)JPEG格式的圖片進(jìn)行解碼,將原始輸入的JPEG圖片轉(zhuǎn)換成YUV數(shù)據(jù),對(duì)神經(jīng)網(wǎng)絡(luò)的推理輸入數(shù)據(jù)進(jìn)行預(yù)處理。 -JPEG圖片處理完成后,需要用JPEGE編碼模塊對(duì)處理后的數(shù)據(jù)進(jìn)行JPEG格式還原,用于神經(jīng)網(wǎng)絡(luò)的推理輸出數(shù)據(jù)的后處理。 -當(dāng)輸入圖片格式為PNG時(shí),需要調(diào)用PNGD解碼來(lái)自:百科https://{erouter_endpoint}/v3/08d5a9564a704afda6039ae2babbef3c/enterprise-router/ instances/08d5a9564a704afda6039ae2babbef3c 響應(yīng)示例 狀態(tài)碼: 200 OK { "instance"來(lái)自:百科
- ae做神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
安全組描述 請(qǐng)求示例 更新id為d29ae17d-f355-4992-8747-1fb66cc9afd2的安全組,名稱更新為sg-test02。 PUT https://{Endpoint}/v2.0/security-groups/d29ae17d-f355-4992-8747-1fb66cc9afd2來(lái)自:百科圖像的裁剪與縮放。 上圖展示了一種典型改變圖像尺寸的裁剪和補(bǔ)零操作,VPC在原圖像中取出的待處理圖像部分,再將這部分進(jìn)行補(bǔ)零操作,在卷積神經(jīng)網(wǎng)絡(luò)計(jì)算過(guò)程中保留邊緣的特征信息。補(bǔ)零操作需要用到上、下、左、右四個(gè)填充尺寸,在補(bǔ)零區(qū)域中進(jìn)行圖像邊緣擴(kuò)充,最后得到可以直接計(jì)算的補(bǔ)零后圖像。來(lái)自:百科
- ae做神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
通過(guò)本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開(kāi)放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章 通用視覺(jué)基元屬性感知來(lái)自:百科
視頻監(jiān)控 視頻檢測(cè) 人工智能 機(jī)器視覺(jué) 商品介紹 電瓶車(chē)起火事件時(shí)有發(fā)生,為保證樓宇公共安全,禁止電瓶車(chē)進(jìn)入,該產(chǎn)品采用AI智能算法,利用卷積神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)深度學(xué)習(xí)實(shí)現(xiàn)電瓶車(chē)檢測(cè)功能。 電梯內(nèi)電瓶車(chē)檢測(cè)商品介紹: 應(yīng)用場(chǎng)景: 隨著電瓶車(chē)越來(lái)越受歡迎,電瓶車(chē)起火事件也時(shí)有發(fā)生。特別當(dāng)來(lái)自:云商店
部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開(kāi)發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來(lái)自:百科
類(lèi)、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別來(lái)自:百科
華為企業(yè)人工智能高級(jí)開(kāi)發(fā)者培訓(xùn):培訓(xùn)內(nèi)容 國(guó)家名稱縮寫(xiě) 手機(jī)號(hào)所屬的國(guó)家 神經(jīng)網(wǎng)絡(luò)介紹 策略參數(shù)說(shuō)明:核函數(shù)特征交互神經(jīng)網(wǎng)絡(luò) Grs國(guó)家碼對(duì)照表:DR2:亞非拉(新加坡) 國(guó)家(或地區(qū))碼 地理位置編碼 排序策略:核函數(shù)特征交互神經(jīng)網(wǎng)絡(luò)-PIN 提交排序任務(wù)API:請(qǐng)求消息 國(guó)家碼和地區(qū)碼 解析線路類(lèi)型:地域線路細(xì)分(全球)來(lái)自:云商店
簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪問(wèn)接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽 層來(lái)自:百科
目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測(cè)、扭曲校正、文本內(nèi)容檢測(cè)、圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人來(lái)自:百科