- bp神經(jīng)網(wǎng)絡(luò)算法改進(jìn) 內(nèi)容精選 換一換
-
使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(高級(jí)) 中級(jí) 中級(jí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 使用MindSpore進(jìn)行可視化調(diào)試調(diào)優(yōu) 基于昇騰AI處理器的算子開(kāi)發(fā) 基于昇騰AI處理器的目標(biāo)檢測(cè)應(yīng)用(ACL) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 使用MindSpore進(jìn)行可視化調(diào)試調(diào)優(yōu) 基于昇騰AI處理器的算子開(kāi)發(fā)來(lái)自:專題如何提高算子的計(jì)算性能?怎樣修改現(xiàn)有算子的計(jì)算邏輯?昇騰AI軟件棧不支持模型中的算子怎么辦?別急別急,和我一起從單算子開(kāi)發(fā)學(xué)習(xí)自定義算子開(kāi)發(fā)吧! 為什么要自定義算子 深度學(xué)習(xí)算法由一個(gè)個(gè)計(jì)算單元組成,我們稱這些計(jì)算單元為算子(Operator,簡(jiǎn)稱Op)。算子是一個(gè)函數(shù)空間到函數(shù)空間上的映射O:X→X;從廣義上講,來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)算法改進(jìn) 相關(guān)內(nèi)容
-
類場(chǎng)景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海來(lái)自:百科AI挑戰(zhàn)賽圍繞生活中的街景圖像展開(kāi),選手可以通過(guò)深度學(xué)習(xí)算法進(jìn)行圖像語(yǔ)義分割,對(duì)圖像進(jìn)行像素級(jí)別的分類。 【賽事背景】 近年來(lái),以AI技術(shù)為核心的各項(xiàng)應(yīng)用經(jīng)過(guò)多年的快速發(fā)展,人工智能已經(jīng)融入到人們的生活當(dāng)中。隨著產(chǎn)業(yè)需求和政策導(dǎo)向需要,各公司在AI技術(shù)方面的投資持續(xù)增長(zhǎng),計(jì)算機(jī)視覺(jué)已經(jīng)成為了相關(guān)算法占比最大,研發(fā)投入來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)算法改進(jìn) 更多內(nèi)容
-
基于對(duì)視頻的前后幀信息、光流運(yùn)動(dòng)信息分析、場(chǎng)景內(nèi)容信息識(shí)別等分析,檢測(cè)和識(shí)別視頻動(dòng)作 優(yōu)勢(shì) 多模態(tài)識(shí)別 綜合圖像、光流、聲音等信息,識(shí)別動(dòng)作更準(zhǔn)確 識(shí)別準(zhǔn)確 采用3D卷積神經(jīng)網(wǎng)絡(luò)算法,動(dòng)作識(shí)別準(zhǔn)確度高 對(duì)復(fù)雜場(chǎng)景魯棒性強(qiáng) 對(duì)不同天氣條件、不同的攝像頭角度等復(fù)雜場(chǎng)景的視頻動(dòng)作識(shí)別具有良好的魯棒性 建議搭配使用: 對(duì)象存儲(chǔ)服務(wù) OBS來(lái)自:百科規(guī)或者關(guān)鍵信息,包括踢、扔、拋物體等。 視頻質(zhì)量分析VQA 視頻質(zhì)量分析(Video Quality Analysis)是通過(guò)深度卷積神經(jīng)網(wǎng)絡(luò)算法識(shí)別視頻畫面質(zhì)量,將視頻畫面的質(zhì)量進(jìn)行歸類,從而過(guò)濾出清晰的高質(zhì)量視頻。 視頻 OCR :視頻OCR(Video Optical Character來(lái)自:百科V2.2系列課程。物聯(lián)網(wǎng)、大數(shù)據(jù)和人工智能相互融合并創(chuàng)建自動(dòng)化生態(tài)系統(tǒng)。物聯(lián)網(wǎng)設(shè)備收集數(shù)百萬(wàn)條標(biāo)準(zhǔn)的數(shù)據(jù),然后在云中進(jìn)行整理,用于訓(xùn)練和改進(jìn)人工智能算法。物聯(lián)網(wǎng)、大數(shù)據(jù)和人工智能相互聯(lián)系,相互促進(jìn)。 目標(biāo)學(xué)員 對(duì)云技術(shù)感興趣,希望成為云服務(wù)工程師的人員 課程目標(biāo) 掌握物聯(lián)網(wǎng)、大數(shù)據(jù)、來(lái)自:百科快速的外存訪問(wèn)技術(shù),適用于超高清和 視頻直播 等低時(shí)延場(chǎng)景 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海來(lái)自:百科DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科類場(chǎng)景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中來(lái)自:百科類場(chǎng)景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中來(lái)自:百科算引擎由開(kāi)發(fā)者進(jìn)行自定義來(lái)完成所需要的具體功能。 通過(guò)流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過(guò)濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來(lái)源。來(lái)自:百科RASR優(yōu)勢(shì) 識(shí)別準(zhǔn)確率高 采用最新一代語(yǔ)音識(shí)別技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡(jiǎn)稱DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快 把語(yǔ)言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。來(lái)自:百科類場(chǎng)景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海來(lái)自:百科
- 多層神經(jīng)網(wǎng)絡(luò)(BP算法)介紹
- 基于改進(jìn)遺傳優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)金融序列預(yù)測(cè)算法matlab仿真
- 【BP回歸預(yù)測(cè)】基于matlab Tent混沌映射改進(jìn)的麻雀算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測(cè)【含Matlab源碼 1707期】
- 深度神經(jīng)網(wǎng)絡(luò)(DNN)反向傳播算法(BP)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- RSNNS包 BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)(算法整體思路及原理+手寫公式推導(dǎo))
- 【BP分類】基于matlab哈里斯鷹算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)分類【含Matlab源碼 1725期】