- bp神經(jīng)網(wǎng)絡(luò)輸出層 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員來(lái)自:百科云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)輸出層 相關(guān)內(nèi)容
-
LeNet-5由輸入層、卷積層、池化層和全連接層組成。輸入層用于輸入數(shù)據(jù);卷積層通過(guò)卷積運(yùn)算對(duì)輸入進(jìn)行局部特征提??;池化層通過(guò)下采樣的方式降低特征圖的分辨率,從而降低輸出對(duì)位置和形變的敏感度,同時(shí)還可降低網(wǎng)絡(luò)中的參數(shù)和計(jì)算量;全連接層將局部特征通過(guò)權(quán)值矩陣組裝成完整的圖像,完成特征空間到真實(shí)類別空間的映射,最終的圖像來(lái)自:百科行流動(dòng)。在配置完成節(jié)點(diǎn)屬性后,向計(jì)算引擎流程圖的開(kāi)始節(jié)點(diǎn)灌入數(shù)據(jù)就會(huì)啟動(dòng)整個(gè)計(jì)算引擎的運(yùn)行流程。 流程編排器,運(yùn)行于L1芯片使能層之上,L3應(yīng)用使能層之下,為多種操作系統(tǒng)(Linux、Android等)提供統(tǒng)一的標(biāo)準(zhǔn)化中間接口,并且負(fù)責(zé)完成整個(gè)計(jì)算引擎流程圖的建立、銷毀和計(jì)算資源的回收。來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)輸出層 更多內(nèi)容
-
流程編排器負(fù)責(zé)完成神經(jīng)網(wǎng)絡(luò)在昇騰AI處理器上的落地與實(shí)現(xiàn),統(tǒng)籌了整個(gè)神經(jīng)網(wǎng)絡(luò)生效的過(guò)程。 數(shù)字視覺(jué)預(yù)處理模塊在輸入之前進(jìn)行一次數(shù)據(jù)處理和修飾,來(lái)滿足計(jì)算的格式需求。 張量加速引擎作為神經(jīng)網(wǎng)絡(luò)算子兵工廠,為神經(jīng)網(wǎng)絡(luò)模型源源不斷提供功能強(qiáng)大的計(jì)算算子。 框架管理器將原始神經(jīng)網(wǎng)絡(luò)模型轉(zhuǎn)換成昇來(lái)自:百科本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必來(lái)自:百科華為云計(jì)算 云知識(shí) 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 時(shí)間:2020-12-09 09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺(jué)的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門示例詳解:構(gòu)建手寫(xiě)數(shù)字識(shí)別模型。來(lái)自:百科多種識(shí)別模式 支持多種實(shí)時(shí)語(yǔ)音轉(zhuǎn)寫(xiě)模式,如流式識(shí)別、連續(xù)識(shí)別和實(shí)時(shí)識(shí)別模式,靈活適應(yīng)不同應(yīng)用場(chǎng)景。 定制化服務(wù) 可定制特定垂直領(lǐng)域的語(yǔ)言層模型,可識(shí)別更多專有詞匯和行業(yè)術(shù)語(yǔ),進(jìn)一步提高識(shí)別準(zhǔn)確率。 語(yǔ)音識(shí)別 語(yǔ)音識(shí)別服務(wù)可以實(shí)現(xiàn)1分鐘以內(nèi)、不超過(guò)4MB的音頻到文字的轉(zhuǎn)換。對(duì)于用來(lái)自:百科基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè)來(lái)自:百科DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科多種識(shí)別模式:支持多種 實(shí)時(shí)語(yǔ)音識(shí)別 模式,如流式識(shí)別、連續(xù)識(shí)別和實(shí)時(shí)識(shí)別模式,靈活適應(yīng)不同應(yīng)用場(chǎng)景。 定制化服務(wù):可定制特定垂直領(lǐng)域的語(yǔ)言層模型,可識(shí)別更多專有詞匯和行業(yè)術(shù)語(yǔ),進(jìn)一步提高識(shí)別準(zhǔn)確率。 前沿技術(shù):使用工業(yè)界成熟的算法,結(jié)合學(xué)術(shù)界最新研究成果,為企業(yè)提供獨(dú)特競(jìng)爭(zhēng)力優(yōu)勢(shì)。來(lái)自:專題本實(shí)驗(yàn)通過(guò)模型轉(zhuǎn)換、數(shù)據(jù)預(yù)處理/網(wǎng)絡(luò)模型加載/推理/結(jié)果輸出全流程展示昇騰處理器推理應(yīng)用開(kāi)發(fā)過(guò)程,幫助您快速熟悉ACL這套計(jì)算加速庫(kù)。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 了解華為昇騰全棧開(kāi)發(fā)工具M(jìn)indStudio及其離線模型轉(zhuǎn)換功能; ② 了解如何使用ACL開(kāi)發(fā)基于華為昇騰處理器的神經(jīng)網(wǎng)絡(luò)推理應(yīng)用 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境來(lái)自:百科
- 神經(jīng)網(wǎng)絡(luò)BP三層模型易懂分析
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- RSNNS包 BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)
- 【BP回歸預(yù)測(cè)】基于matlab鯨魚(yú)算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測(cè)(多輸入單輸出)【含Matlab源碼 1554期】
- 多層神經(jīng)網(wǎng)絡(luò)(BP算法)介紹
- 【基礎(chǔ)教程】BP神經(jīng)網(wǎng)絡(luò)
- 【BP回歸預(yù)測(cè)】基于matlab布谷鳥(niǎo)算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測(cè)(多輸入單輸出)【含Matlab源碼 1555期】