- BP深度神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
Engine)提供了昇騰AI處理器自定義算子開(kāi)發(fā)能力,通過(guò)TBE提供的API和自定義算子編程開(kāi)發(fā)界面可以完成相應(yīng)神經(jīng)網(wǎng)絡(luò)算子的開(kāi)發(fā)。 TBE的重要概念之一為NPU,即Neural-network Processing Unit,神經(jīng)網(wǎng)絡(luò)處理器。 在維基百科中,NPU這個(gè)詞條被直接指向了“人工智能加速器”,釋義是這樣的:來(lái)自:百科計(jì)算引擎由開(kāi)發(fā)者進(jìn)行自定義來(lái)完成所需要的具體功能。 通過(guò)流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過(guò)濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來(lái)源。來(lái)自:百科
- BP深度神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開(kāi)發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。 2. 具備一定的C++、Shell、Python腳本開(kāi)發(fā)能力。來(lái)自:百科目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測(cè)、扭曲校正、文本內(nèi)容檢測(cè)、圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用來(lái)自:百科
- BP深度神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
0系列課程。計(jì)算機(jī)視覺(jué)是深度學(xué)習(xí)領(lǐng)域最熱門的研究領(lǐng)域之一,它衍生出了一大批快速發(fā)展且具有實(shí)際作用的應(yīng)用,包括 人臉識(shí)別 、圖像檢測(cè)、目標(biāo)監(jiān)測(cè)以及智能駕駛等。這一切本質(zhì)都是對(duì)圖像數(shù)據(jù)進(jìn)行處理,本課程就圖像處理理論及相應(yīng)技術(shù)做了介紹,包括傳統(tǒng)特征提取算法和卷積神經(jīng)網(wǎng)絡(luò),學(xué)習(xí)時(shí)注意兩者的區(qū)別。來(lái)自:百科
RASR優(yōu)勢(shì) 識(shí)別準(zhǔn)確率高 采用最新一代 語(yǔ)音識(shí)別 技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡(jiǎn)稱DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快 把語(yǔ)言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。來(lái)自:百科
專業(yè)數(shù)倉(cāng)支持設(shè)計(jì)應(yīng)用多維分析,快速響應(yīng) 智能設(shè)備維護(hù) 預(yù)測(cè)性維護(hù),根據(jù)系統(tǒng)過(guò)去和現(xiàn)在的狀態(tài),采用時(shí)間序列預(yù)測(cè)、神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)和回歸分析等預(yù)測(cè)推理方法,預(yù)測(cè)系統(tǒng)將來(lái)是否會(huì)發(fā)生故障,何時(shí)發(fā)生故障,發(fā)生故障類型,可以提升服務(wù)運(yùn)維效率,降低設(shè)備非計(jì)劃停機(jī)時(shí)間,節(jié)約現(xiàn)場(chǎng)服務(wù)人力成本 優(yōu)勢(shì) 多種參數(shù)靈活接入 基于歷史監(jiān)測(cè)數(shù)據(jù)、設(shè)來(lái)自:百科
到作業(yè)人員打手機(jī)行為,加強(qiáng)安全管控。 打手機(jī)智能檢測(cè)算法是基于人工智能技術(shù)領(lǐng)域中的深度學(xué)習(xí)技術(shù),結(jié)合大數(shù)據(jù),使用大量的人員打手機(jī)圖片數(shù)據(jù)采用監(jiān)督學(xué)習(xí)的方式進(jìn)行智能檢測(cè)訓(xùn)練。算法采用深度卷積神經(jīng)網(wǎng)絡(luò)提取數(shù)據(jù)中關(guān)鍵特征,忽略圖片數(shù)據(jù)中的不相關(guān)信息,并結(jié)合業(yè)務(wù)邏輯進(jìn)行推理判斷。 將訓(xùn)練來(lái)自:云商店
時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等來(lái)自:百科
技術(shù)領(lǐng)域 技術(shù)領(lǐng)域 AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí)來(lái)自:專題
GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫渲染,CAD等 應(yīng)用場(chǎng)景 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)來(lái)自:百科
華為云計(jì)算 云知識(shí) 內(nèi)容審核 內(nèi)容審核 時(shí)間:2020-10-30 15:37:36 內(nèi)容審核( Content Moderation )基于基于深度神經(jīng)網(wǎng)絡(luò)模型,實(shí)現(xiàn)對(duì)圖像、文本、視頻內(nèi)容的智能檢測(cè)檢測(cè),可自動(dòng)進(jìn)行涉黃、廣告、涉政涉暴、涉政敏感人物、違禁品和灌水文本等內(nèi)容的檢測(cè),幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),大幅降低人工審核成本。來(lái)自:百科
- 深度神經(jīng)網(wǎng)絡(luò)(DNN)反向傳播算法(BP)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- RSNNS包 BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)
- 【深度學(xué)習(xí) | 感知器 & MLP(BP神經(jīng)網(wǎng)絡(luò))】掌握感知的藝術(shù): 感知器和MLP-BP如何革新神經(jīng)網(wǎng)絡(luò)
- 多層神經(jīng)網(wǎng)絡(luò)(BP算法)介紹
- 【基礎(chǔ)教程】BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)及matlab實(shí)現(xiàn)