- 深度強(qiáng)化學(xué)習(xí)訓(xùn)練 內(nèi)容精選 換一換
-
提高管理效率。 核心功能: 單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車; 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對(duì)電瓶車的檢測(cè),具有速度快、準(zhǔn)確率高的特點(diǎn)。算法特別優(yōu)化了俯視視角下的目標(biāo)檢測(cè),更適合電梯內(nèi)的使用場(chǎng)景來自:云商店需求》主題分享,直播中史老師從建設(shè)背景、建設(shè)思路以及解決方案和實(shí)踐案例四個(gè)方面對(duì)知途教育與華為云深度合作下,產(chǎn)教融合的人才培養(yǎng)模式做了詳細(xì)介紹。也針對(duì)直播間觀眾提出的相關(guān)問題做了深度解答。 直播精選問答: 1、Q:端云架構(gòu),是先學(xué)習(xí)端,還是先學(xué)習(xí)云? A:沒有明確界定,可以個(gè)人興來自:云商店
- 深度強(qiáng)化學(xué)習(xí)訓(xùn)練 相關(guān)內(nèi)容
-
面向有AI基礎(chǔ)的開發(fā)者,提供機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的算法開發(fā)及部署全功能,包含數(shù)據(jù)處理、模型開發(fā)、模型訓(xùn)練、AI應(yīng)用管理和部署上線流程。 涉及計(jì)費(fèi)項(xiàng)包含: 開發(fā)環(huán)境(Notebook) 模型訓(xùn)練(訓(xùn)練作業(yè)) 部署上線(在線服務(wù)) 自動(dòng)學(xué)習(xí) 面向AI基礎(chǔ)能力弱的開發(fā)者,根據(jù)標(biāo)注數(shù)據(jù)、自動(dòng)設(shè)計(jì)、調(diào)優(yōu)、訓(xùn)練模型和部署來自:專題P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL來自:專題
- 深度強(qiáng)化學(xué)習(xí)訓(xùn)練 更多內(nèi)容
-
MXNet等深度學(xué)習(xí)框架 推理加速型Pi2 Pi2型 彈性云服務(wù)器 采用專為AI推理打造的NVIDIA Tesla T4 GPU,能夠提供超強(qiáng)的實(shí)時(shí)推理能力。Pi2型彈性云服務(wù)器借助T4的INT8運(yùn)算器,能夠提供最大130TOPS的INT8算力。Pi2也可以支持輕量級(jí)訓(xùn)練場(chǎng)景。 Pi2型彈性云服務(wù)器的規(guī)格來自:百科身份統(tǒng)一管理創(chuàng)新與優(yōu)化:華為云 OneAccess 應(yīng)用身份管理服務(wù)的2023年 相關(guān)推薦 使用強(qiáng)化學(xué)習(xí)內(nèi)置環(huán)境實(shí)現(xiàn)車桿游戲:環(huán)境介紹 大數(shù)據(jù)分析:人工智能應(yīng)用 購(gòu)買數(shù)據(jù)建模引擎:購(gòu)買基礎(chǔ)版 產(chǎn)品優(yōu)勢(shì) 使用強(qiáng)化學(xué)習(xí)自定義環(huán)境實(shí)現(xiàn)貪吃蛇游戲:環(huán)境介紹與實(shí)現(xiàn) 產(chǎn)品類型簡(jiǎn)介 準(zhǔn)備工作:創(chuàng)建rf_admin_trust委托(可選)來自:百科語言文本到目標(biāo)語言文本的自動(dòng)翻譯 產(chǎn)品優(yōu)勢(shì) 算法領(lǐng)先 基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化, 機(jī)器翻譯 效果和速度業(yè)界領(lǐng)先 數(shù)據(jù)支持 專業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語料庫(kù) 穩(wěn)定可靠 基于企業(yè)級(jí)客戶實(shí)踐,經(jīng)受復(fù)雜場(chǎng)景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場(chǎng)景中成功應(yīng)用來自:百科文本到目標(biāo)語言文本的自動(dòng)翻譯。 產(chǎn)品優(yōu)勢(shì) 算法領(lǐng)先 基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化,機(jī)器翻譯效果和速度業(yè)界領(lǐng)先。 數(shù)據(jù)支持 專業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語料庫(kù)。 穩(wěn)定可靠 基于企業(yè)級(jí)客戶實(shí)踐,經(jīng)受復(fù)雜場(chǎng)景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場(chǎng)景中成功應(yīng)用。來自:百科ModelArts AI Gallery_市場(chǎng)_資產(chǎn)集市 ModelArts推理部署_服務(wù)_訪問公網(wǎng)-華為云 ModelArts模型訓(xùn)練_模型訓(xùn)練簡(jiǎn)介_如何訓(xùn)練模型 ModelArts推理部署_模型_AI應(yīng)用來源-華為云 ModelArts推理部署_ OBS 導(dǎo)入_模型包規(guī)范-華為云 什么是跨源連接- 數(shù)據(jù)湖探索 DLI跨源連接來自:專題行業(yè)知識(shí),讓開發(fā)者聚焦自身業(yè)務(wù)。讓企業(yè)用戶聚焦于技術(shù)創(chuàng)新,將模型訓(xùn)練、定制的小事交給ModelArts Pro。 AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training來自:百科生命周期內(nèi)的安全保護(hù)。 云數(shù)據(jù)庫(kù) GaussDB AI-Native自治,管理智能高效 參數(shù)自調(diào)優(yōu) 當(dāng)前已經(jīng)覆蓋了500+重點(diǎn)參數(shù),通過深度強(qiáng)化學(xué)習(xí)與全局調(diào)優(yōu)算法,結(jié)合不同業(yè)務(wù)負(fù)載模型進(jìn)行針對(duì)性調(diào)優(yōu),相比DBA人工根據(jù)經(jīng)驗(yàn)調(diào)優(yōu),性能提升30%的同時(shí),耗費(fèi)時(shí)間從天下降到分鐘級(jí)。 智能索引推薦來自:專題類,聚類,回歸,異常檢測(cè)等算法。支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)來自:百科自動(dòng)檢測(cè)壓板投退狀態(tài)并實(shí)時(shí)反饋,為安監(jiān)人員進(jìn)行現(xiàn)場(chǎng)監(jiān)督提供技術(shù)保障。 商品介紹 基于大規(guī)模壓板圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫面實(shí)時(shí)分析,通過深度學(xué)習(xí)算法實(shí)時(shí)檢測(cè)各種壓板的狀態(tài)。 服務(wù)商簡(jiǎn)介 深圳市鐵越電氣有限公司成立于2000年初,注冊(cè)來自:云商店
- 【強(qiáng)化學(xué)習(xí)基礎(chǔ)】深度強(qiáng)化學(xué)習(xí)介紹
- 強(qiáng)化學(xué)習(xí) 游戲訓(xùn)練 谷歌足球 vizdoom
- [機(jī)器學(xué)習(xí)|理論&實(shí)踐] 創(chuàng)新與機(jī)器學(xué)習(xí)在游戲開發(fā)的應(yīng)用
- 強(qiáng)化學(xué)習(xí)算法中深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 深度強(qiáng)化學(xué)習(xí)模型優(yōu)化算法綜述
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 利用深度強(qiáng)化學(xué)習(xí)優(yōu)化鉆井過程
- 深度強(qiáng)化學(xué)習(xí):原理、算法與應(yīng)用
- 人工智能LLM模型:獎(jiǎng)勵(lì)模型的訓(xùn)練、PPO 強(qiáng)化學(xué)習(xí)的訓(xùn)練、RLHF
- 【MADRL】多智能體深度強(qiáng)化學(xué)習(xí)《綱要》