- 機(jī)器學(xué)習(xí)中的roc曲線 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- 機(jī)器學(xué)習(xí)中的roc曲線 相關(guān)內(nèi)容
-
來評(píng)估新模型的泛化能力。通過驗(yàn)證測(cè)試數(shù)據(jù)集上的平均損失,可以評(píng)估模型對(duì)未知數(shù)據(jù)的預(yù)測(cè)能力。模型評(píng)價(jià)指標(biāo)是評(píng)估模型泛化能力的標(biāo)準(zhǔn),不同的指標(biāo)往往會(huì)導(dǎo)致不同的評(píng)判結(jié)果。 ModelArts模型評(píng)估/診斷功能針對(duì)不同類型模型的評(píng)估任務(wù),提供相應(yīng)的評(píng)估指標(biāo)。在展示評(píng)估結(jié)果的同時(shí),會(huì)根據(jù)不來自:百科來自:百科
- 機(jī)器學(xué)習(xí)中的roc曲線 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) CBR中的基礎(chǔ)概念 CBR中的基礎(chǔ)概念 時(shí)間:2021-07-02 10:50:39 CBR中的常用基礎(chǔ)概念有: 1. 存儲(chǔ)庫 云備份使用存儲(chǔ)庫來存放備份,存儲(chǔ)庫分為備份存儲(chǔ)庫和復(fù)制存儲(chǔ)庫兩種。 2. 復(fù)制 復(fù)制是指將一個(gè)區(qū)域已經(jīng)生成的備份 數(shù)據(jù)復(fù)制 到另一個(gè)區(qū)域。來自:百科
數(shù)據(jù)庫安全 基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來自:百科
- python 畫roc曲線
- ROC曲線繪制(Python)
- ROC曲線(Receiver Operating Characteristic Curve)
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——3.3.3 ROC和AUC
- 算法金 | 一文徹底理解機(jī)器學(xué)習(xí) ROC-AUC 指標(biāo)
- R語言應(yīng)用實(shí)戰(zhàn)系列(五)-樸素貝葉斯算法以及ROC和PR曲線
- 《scikit-learn機(jī)器學(xué)習(xí)常用算法原理及編程實(shí)戰(zhàn)》—3.4 學(xué)習(xí)曲線
- 游戲開發(fā)中的貝塞爾曲線,曲線和路徑
- [機(jī)器學(xué)習(xí)|理論&實(shí)踐] 體育分析中的機(jī)器學(xué)習(xí)應(yīng)用
- 《機(jī)器學(xué)習(xí):算法視角(原書第2版)》 —2.2.5 受試者工作特征曲線